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ABSTRACT
Systems performing large data-parallel computations, including
online analytical processing (OLAP) systems like Druid and search
engines like Elasticsearch, are increasingly being used for business-
critical real-time applications where providing low query latency
is paramount. In this paper, we investigate an underexplored factor
in the performance of data-parallel queries: their parallelism. We
find that to minimize the tail latency of data-parallel queries, it is
critical to place data such that the data items accessed by each indi-
vidual query are spread across as many machines as possible so that
each query can leverage the computational resources of as many
machines as possible. To optimize parallelism and minimize tail
latency in real systems, we develop a novel parallelism-optimizing
data placement algorithm that defines a linearly-computable mea-
sure of query parallelism, uses it to frame data placement as an
optimization problem, and leverages a new optimization problem
partitioning technique to scale to large cluster sizes. We apply this
algorithm to popular systems such as Solr and MongoDB and show
that it reduces p99 latency by 7-64% on data-parallel workloads.
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1 INTRODUCTION
Systems that perform highly parallel, latency-sensitive compu-
tations on data are increasingly popular. Examples of these sys-
tems include online analytical processing (OLAP) systems like
Druid [32] and Clickhouse [7], search engines like ElasticSearch [9]
and Solr [6], and many others. These systems are often used for
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Figure 1: Each server contains three data shards colored by
which queries access them. In (a), every query except Q4 ac-
cesses multiple shards on the same server, causing resource
contention and high tail latency even though each server re-
ceives the same total amount of query load. In (b), all queries
are processed in parallel across multiple servers, minimizing
contention and tail latency.

real-time applications where performance is paramount, such as
online fraud detection [3] or operational monitoring [2, 4].

Because low query latency is critical for many data-parallel sys-
tems, there has been much work on improving query performance.
One area of focus is data placement. Data-parallel systems typically
implement a shared-nothing architecture and horizontally parti-
tion data into many shards. Individual queries access data on many
shards in parallel, but workloads are often heterogeneous so some
shards (for example, shards storing more recent data) receive far
more queries than others. Shards typically contain at least several gi-
gabytes of data, so systems must “ship code to data” and run queries
in-place on the shards they access. While it is well understood that
data placement can affect query performance, most prior work only
considers the importance of balancing query load across servers,
leveraging techniques such as mathematical programming [31], bin
packing [18], and various heuristic algorithms [21, 24, 26].

Our key insight in this paper is that even if the load is balanced
in a data placement, performance can still be improved by optimiz-
ing query parallelism. We consider data-parallel workloads, which
naturally apply the same operation to many data items typically
spread over multiple shards. For example, in a Druid deployment
where each shard stores one contiguous hour of data, a query for
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how many events occurred in the last ten hours would access data
on ten shards, running separate operations on each shard in parallel.
To minimize the latency of these data-parallel queries, especially
at the tail, systems should place shards that are frequently queried
together (for example, shards containing consecutive time ranges)
on different servers. Doing so maximizes the computational re-
sources available to queries and minimizes resource contention by
parallelizing work across as many servers as possible.

We illustrate the importance of optimizing parallelism in Figure 1.
In this setup, clients issue five queries, each of which accesses data
on two to three shards. In Figure 1a, load is balanced between all
three servers, but shards queried together (e.g. shards 4-5, both of
which are accessed by Q3) are often co-located. This can lead to high
resource contention on individual servers; for example, if multiple
clients issue Q3 at the same time, Server B will be momentarily
overloaded and latency will spike. However, the data placement in
Figure 1b optimizes query parallelism: no query accesses multiple
shards on the same server, minimizing contention for computational
resources.

While we are not aware of any prior work that studies the im-
pact of data placement on query parallelism, some systems like
Apache Druid [32] use domain-specific heuristics to place data
in a parallelism-aware manner [1]. There has also been much re-
search on optimizing query performance through data placement
in transactional workloads. Systems such as Schism [15], Accor-
dion [28] and Clay [29] optimize OLTP workload performance by
co-locating data items that are frequently queried together, min-
imizing the number of distributed transactions. This minimizes
transaction coordination costs in write-heavy OLTP workloads.
However, it is counterproductive for data-parallel queries, as they
are embarrassingly parallel and require minimal coordination, so
their performance is maximized by parallelizing them across many
servers.

In this paper, we propose Parallelism-Optimizing Data Placement
(PODP), a novel data placement algorithm for optimizing query
parallelism in data-parallel systems. Like prior work that focuses
on load balancing or OLTP systems [28, 31] we formulate data
placement as a mathematical optimization problem, specifically
a mixed-integer linear program (MILP). However, adapting this
approach to efficiently optimize query parallelism requires us to ad-
dress two challenges. First, we must develop a linearly-computable
measure of query parallelism to serve as an optimization objective.
Second, we must mitigate the poor runtime performance scaling of
MILP solvers, which has led prior systems to favor faster heuristic
algorithms [31].

Formulating the optimization problem is difficult because we
aim to minimize query tail latency by optimizing parallelism, but
it is not obvious how to express either latency or parallelism as
linear functions. Through experimentation, we found that worst-
case latency is proportional to the maximum number of co-located
shards accessed by a query, as under high load those shards may
be accessed sequentially instead of in parallel. We call this the
clustering of a query and define our MILP with a linear objective
function that minimizes clustering for a given set of queries.

To scale our MILP approach to large systems, we adapt a new
technique, partitioned optimization problems (POP) [27]. Instead

of solving an optimization problem over the entire system, we par-
tition it into sub-problems where each contains only a fraction
of the system’s shards and servers. Because solver runtime scal-
ing is superlinear, we can solve all these sub-problems in seconds
whereas solving a single large problem would take hours, while
still computing a near-optimal data placement.

We evaluate PODP on several popular systems, including Solr [6]
and MongoDB [5]. In an observational study, we find that differing
levels of query parallelism explain as much as 82% of the variance
in tail latency for parallel queries. Compared to several existing
data placement strategies, PODP improves performance by 7-50%
in uniform workloads where all shards are equally likely to be
accessed, and by 54-64% in skewed workloads where some shards
are accessed more frequently than others. We additionally find
that PODP scales to large systems, computing data placements for
systems with 600 servers and 6000 shards in <32 seconds.

In summary, our contributions are:

• We characterize the effects of query parallelism on per-
formance in data-parallel systems. We show that query
parallelism can explain as much as 82% of the variance in
tail latency for highly parallel queries.

• We propose PODP, a novel data placement algorithm that
uses mixed-integer linear programming to both balance
load and optimize query parallelism. We show that it scales
to large systems, running in <32 sec in a cluster with 6000
shards.

• We implement PODP and apply it to real systems such
as Apache Solr and MongoDB, showing it reduces tail la-
tency by 7-50% in uniform workloads and 54-64% in skewed
workloads compared to several baselines.

2 PROBLEM STATEMENT AND
EXPERIMENTAL EXPLORATION

In this paper, we study the impact of data placement on query tail la-
tency. Specifically, we examine systems like Solr [6] and Druid [32]
which are characterized by large data-parallel queries that access
data partitioned across many shards stored on multiple servers.
The question that interests us is: given a set of queries, shards,
and servers, how do we assign shards to servers to minimize
query tail latency?

We hypothesize that a major determinant of query tail latency is
query parallelism and that queries perform worse when they access
multiple shards co-located on the same servers. In the remainder of
this section, we conduct several experiments testing this hypothesis.
We find that query tail latency is significantly affected by the num-
ber of n-clusters in a system, where an n-cluster is a set of 𝑛 shards
on the same server that are accessed by a single query. We show
that large numbers of n-clusters are correlated with query queuing
and poor performance and that increasing query parallelism by
breaking up n-clusters improves query tail latency.

Setup. In this section, we describe experiments run both in the
popular full-text search system Apache Solr and in simulation. We
describe our simulator in detail in Section 4.

In Solr, we use a simple query workload to demonstrate how
parallelism-optimizing data placements reduce query latencies. We
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run experiments on a cluster of five AWS EC2 m5d.xlarge servers,
each with four cores. We use a workload adapted from the Lucene
nightly benchmarks [25], storing 3M time-ordered Wikipedia docu-
ments and querying the documents in a time range for the number
of matches to an exact search for the phrase “is also.” We partition
our dataset into 100 shards and set up our queries such that each ac-
cesses data in a time range stored on three consecutive shards. The
performance impact of query parallelism is not unique to this work-
load and we show in Section 5 how PODP improves performance
across a range of system parameters.

In the workload we have described, because all queries access
consecutive shards, it is easy to see that placing consecutive shards
round-robin across servers produces a parallelism-optimized data
placement; in doing so, queries access up to one shard on each
server as long as the number of servers exceeds the number of
shards accessed. If there are 𝑀 servers we obtain this setup by
placing shard 𝑛 on server 𝑛 mod 𝑀 .

We compare this optimal setup to a range of Naive Load Bal-
anced (NLB) data placements. NLB placements ensure that load is
balanced across servers but do not consider query parallelism. In
this workload, an NLB placement is one where shards are evenly
divided between servers because every shard is equally likely to
be queried. NLB placements are commonly used in existing sys-
tems [18, 22, 31] and provide a realistic baseline against which we
can compare parallelism-optimizing data placements.

Experimental Exploration. In data-parallel systems, queries
access data on several shards; each of these shard accesses are han-
dled by the server on which the shard is stored. Workloads are often
CPU-bound, so systems typically execute concurrent requests on
multiple cores if resources are available. However, as system uti-
lization increases and CPU resources become saturated, the server
becomes unable to execute all pending requests simultaneously. As
such, a queue of pending shard accesses builds up on the server.
We refer to the number of pending shard accesses as the queue size.

We know that shard access latencies are tightly linked with the
queue size of a server. Intuitively, this makes sense: if there are
more shard accesses for a server to process, each shard access must
wait a longer period of time before it is scheduled onto a processor.
This in turn increases query latency, which is determined by the
latency of the slowest shard access; that is, the end-to-end latency
of a query depends on the largest queue of any server it accesses.

We postulate that large queues are especially likely to build up
and increase tail latency if queries frequently access multiple shards
on the same server. This is because a query accessing multiple
shards on one server temporarily spikes its queue size, an effect that
is compounded if multiple such queries are issued simultaneously.
To investigate this, we measure in the simulator how the level of
parallelism in data placement affects queue sizes, showing results in
Figure 2. From this CDF, we can see that the worst-case queue sizes
are much larger with NLB data placements than with parallelism-
optimizing data placements. As we show later, this implies that
parallelism-optimization significantly improves query tail latency.

We now quantify how the level of parallelism in data placement
for a given workload affects queue size by investigating the number
of n-clusters in a system. We define an n-cluster as any 𝑛 shards
(𝑛 > 1) in a server that are accessed by a single query; for example,
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Figure 2: In simulator experiments, the CDF of server queue
size using different data placement algorithms. Optimizing
parallelism reduces the p99 queue size by 30%.
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Figure 3: In simulator experiments, the relationship between
the number of 2-clusters on a server and its p99 queue size.
The parallelism-optimizing placement has no 2-clusters and
a small worst-case queue size. NLB placements have a vary-
ing number of 2-clusters and a worst-case queue size which
increases with the number of 2-clusters.

Server A in Figure 1a contains two 2-clusters: the shard set {1, 2}
(which are both accessed by Q1), and the shard set {2, 3} (which
are both accessed by Q2). Data placements that optimize query
parallelism will minimize the number of n-clusters on servers; in
contrast, systems that use NLB data placements do not consider
n-clusters and may have many of them.

To investigate the link between n-clusters and query latency,
we measure in simulation the relationship between the number
of 2-clusters on a server and its p99 queue size, showing results
in Figure 3. We look specifically at the number of 2-clusters per
server because there are very few 3-clusters in our workload. This
graph was created by simulating 150 server setups using both NLB
and parallelism-optimizing data placements and running a query
workload over each of them.We compute the p99 queue size over all
of these server setups and plot this against the number of 2-clusters
per server. As we can see, there are many points corresponding to
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Figure 4: In Solr experiments, the relationship between the
percentage of queries accessing a 2-cluster and p99 latency
for different data placements. The parallelism-optimizing
placement (•) contains no 2-clusters while the worst-case
placement (▲) contains many 2-clusters.

NLB placements (×) because they do not consider query parallelism
and may have any number of n-clusters; by contrast, the single
parallelism-optimizing data placement (•) has no n-clusters. As
we expect, there is a significant link between the number of shard
clusters on a server and the worst-case queue size. This is because
if queries with overlapping n-clusters are issued simultaneously,
the servers hosting the shards containing those clusters will be
momentarily overloaded, causing a spike in queue size.

We directly illustrate how n-cluster frequency impacts tail laten-
cies in Figure 4, where we measure in Solr the relationship between
the percentage of queries accessing 2-clusters and the p99 query la-
tency of a workload. For this experiment, we began with a uniform
workload and generated 25 NLB placements from random initial
conditions. We also generated two special placements: a “best case”
data placement that optimizes query parallelism, and a “worst case”
data placement that optimizes the number of n-clusters. Across all
these different data placements, we find a strong linear correlation
between the proportion of queries accessing 2-clusters and the p99
query latency. Specifically, we compute an 𝑟2 = 0.82, indicating that
82% of the variation in p99 latency is explained by the number of
2-clusters in our system. This demonstrates how optimizing query
parallelism improves query tail latencies by reducing the number
of n-clusters accessed by a workload.

One potential concern regarding parallelism-maximizing data
placement is that, following a “tail at scale” argument [16], it may
counter-intuitively increase tail latency because it increases the
number of servers a query accesses and thus the probability a
query may access a slow server. However, we find this effect is
small because maximizing parallelism only slightly increases the
number of shards that queries access compared to existing data
placement techniques which do not account for query parallelism.
For example, consider a query accessing 20 shards placed on 100
servers. If shards are placed without regard for query parallelism,
this query accesses on average 18.2 servers with 1.8 n-clusters,
but if parallelism is maximized, this query accesses 20 different
servers with 0 n-clusters. While these few additional servers may

Table 1: Notation used in Section 3, in order of introduction.

𝑆 Set of all query shard sets.
𝑐𝑠 Clustering of shard set 𝑠 (§3.1).
𝑓𝑠 Frequency of shard set 𝑠 .
𝑀 Number of data shards.
𝑁 Number of servers.
𝑟𝑖 𝑗 Percentage of queries for shard 𝑖 to be sent to server 𝑗 .
𝑙𝑖 Query load on shard 𝑖 .

𝐿 Average server query load
∑𝑀

𝑖 𝑙𝑖
𝑁

.
𝜖 Tolerance of load imbalance.
𝑚𝑖 Memory usage of shard 𝑖 .
𝐶 𝑗 Memory capacity of server 𝑗 .
𝑥𝑖 𝑗 Binary variable indicating server assignment, 𝑥𝑖 𝑗 = 1 iff 𝑟𝑖 𝑗 > 0.
𝑡𝑖 𝑗 Binary variable, 𝑡𝑖 𝑗 = 0 iff server 𝑖 hosts shard 𝑗 before assignment.
𝑅 Minimum shard replication factor.

slightly increase the chance of a straggler, parallelism-maximization
nevertheless improves query tail latency by 7-64% in practice by
eliminating n-clusters and reducing resource contention, as we
show in Section 5.

3 DATA PLACEMENT ALGORITHM
In this section we describe parallelism-optimizing data placement
(PODP): a novel data placement algorithm for minimizing the la-
tency of data-parallel computations. Developing an effective algo-
rithm is difficult because it must efficiently optimize across multi-
ple competing objectives: maximizing query parallelism, balancing
query load between servers, andminimizing the amount of data that
must be moved between servers to avoid overhead. Prior systems
have formulated the data placement problem as a mixed-integer
linear program (MILP) that balances query load while minimizing
data movement [31], but do not consider query parallelism. To
achieve all three objectives, we design PODP to execute in two
stages. First, we optimize a novel linearly-computable measure of
query parallelism, based on n-clusters, while keeping load balanced.
Then, we minimize a measure of data movement while keeping
load balanced and maintaining the optimal level of query paral-
lelism. We additionally show how we use optimization problem
partitioning [27] to scale the runtime of PODP to large cluster sizes.

3.1 Parallelism Metric
Tomeasure the parallelism of a data placement for a givenworkload,
we define a new metric called clustering: the clustering of a query
is the size of the largest n-cluster it accesses. We define the shard
set of a query as the set of all shards it accesses. A workload can
be expressed as a list 𝑆 of the most popular query shard sets 𝑠 and
their frequencies 𝑓𝑠 over a recent interval. For a given shard set
𝑠 , we define its clustering 𝑐𝑠 as the maximum number of shards
in the set that are placed on the same server; in other words, 𝑐𝑠
is the size of the largest n-cluster in shard set 𝑠 . For example, in
Figure 1a, 𝑐𝑠 = 2 for Q1 because both of the shards it accesses are
on the same server; in 1b, 𝑐𝑠 = 1. As discussed in Section 2, the
worst-case clustering among popular queries is a faithful proxy for
the query tail latency. Hence, minimizing the frequency-weighted
sum of shard set clusters will improve query tail latency.
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3.2 Problem Formulations
Suppose we have a cluster with𝑀 data shards assigned to𝑁 servers.
The data placement algorithm constructs a shard-to-server assign-
ment map 𝑟 , where 𝑟𝑖 𝑗 is the percentage of queries for shard 𝑖 to be
sent to server 𝑗 ; if 𝑟𝑖 𝑗 > 0, server 𝑗 hosts a copy of shard 𝑖 . Queries
are sent to servers randomly; a query for shard 𝑖 may be sent to any
server 𝑗 where 𝑟𝑖 𝑗 > 0with probability 𝑟𝑖 𝑗 . We define 𝑙𝑖 as the query
load on shard 𝑖 , collected from the servers that host that shard. We
define 𝐿 as the average server query load: 𝐿 =

∑𝑀
𝑖 𝑙𝑖
𝑁

; server load
is balanced if the load on each server is within a small tolerance
𝜖 of 𝐿. We define 𝑚𝑖 as the memory usage of shard 𝑖 and 𝐶 𝑗 as
the memory capacity of server 𝑗 . To model shard locations after
assignment, we define a matrix 𝑥 of binary variables indicating
whether servers are assigned copies of shards; 𝑥𝑖 𝑗 is 1 if 𝑟𝑖 𝑗 > 0 and
0 otherwise. To model shard locations before assignment, we also
define a matrix 𝑡 where 𝑡𝑖 𝑗 is 0 if server 𝑖 currently hosts a replica
of shard 𝑗 and 1 otherwise. The total amount of shard movement
is the sum of the element-wise product of 𝑡 and 𝑥 . We define 𝑅

to be the minimum shard replication factor (for redundancy). For
convenience, we summarize all notation in Table 1.

PODP works by solving two optimization problems, first opti-
mizing query parallelism and then optimizing data movement.

Objective 1: Optimizing Parallelism. The problem formula-
tion for minimizing clustering, 𝑃𝑐 , is as follows. Given 𝑀 data
shards, 𝑁 servers, 𝜖 load tolerance, shard loads (𝑙𝑖 ), shard memory
usages (𝑚𝑖 ), server memory capacities (𝐶 𝑗 ), shard-server map (𝑡𝑖 𝑗 ),
replication factor 𝑅, and the set of all query shard sets 𝑆 and their
corresponding frequencies (𝑓𝑠 ), minimize query clustering weighted
by query frequency subject to the following constraints:

min
𝑐𝑠 ,𝑟 ,𝑥

∑︁
𝑠∈𝑆

𝑐𝑠 𝑓𝑠 (1)

subject to:

∀𝑗, 𝐿 − 𝜖 ≤
𝑀∑︁
𝑖

𝑟𝑖 𝑗 𝑙𝑖 ≤ 𝐿 + 𝜖 (2)

∀𝑖,
𝑁∑︁
𝑗

𝑟𝑖 𝑗 = 1 (3)

∀𝑗,
𝑀∑︁
𝑖

𝑥𝑖 𝑗𝑚𝑖 ≤ 𝐶 𝑗 (4)

∀𝑖 𝑗, 𝑥𝑖 𝑗 ≥ 𝑟𝑖 𝑗 (5)
∀𝑖 𝑗, 𝑥𝑖 𝑗 < 𝑟𝑖 𝑗 + 1 (6)

∀𝑖,
𝑁∑︁
𝑗

𝑥𝑖 𝑗 ≥ 𝑅 (7)

∀𝑗,
∑︁
𝑖∈𝑠𝑖

𝑥𝑖 𝑗 ≤ 𝑐𝑠 (8)

Constraint (2) ensures that the load on each server is balanced
with some tolerance 𝜖 . Constraint (3) ensures that all queries are
assigned to a shard. Constraint (4) ensures that server memory
capacities are respected. Constraints (5) and (6) ensure 𝑥𝑖, 𝑗 and 𝑟𝑖, 𝑗
are consistent. Constraint (7) ensures that the minimum replication

factor is respected. Finally, Constraint (8) defines the clustering of
query 𝑠 as the largest number of shards in its shard set co-located
on a server.

Objective 2: Optimizing Data Movement. Solving 𝑃𝑐 , we ob-
tain the optimal values of 𝑐𝑠 , which are used as constraints by 𝑃𝑏𝑎𝑙
to compute the final shard-to-server assignment that minimizes
shardmovement. 𝑃𝑏𝑎𝑙 is formulated as follows. Given𝑀 data shards,
𝑁 servers, 𝜖 load tolerance, shard loads (𝑙𝑖 ), shard memory usages
(𝑚𝑖 ), server memory capacities (𝐶 𝑗 ), shard-sever map (𝑡𝑖 𝑗 ), replica-
tion factor 𝑅, and the optimal clustering values 𝑐𝑠 computed by 𝑃𝑘 ,
minimize shard movement subject to the following constraints:

min
𝑟,𝑥

𝑀∑︁
𝑖

𝑁∑︁
𝑗

𝑡𝑖 𝑗𝑥𝑖 𝑗 (9)

subject to:

∀𝑠 ∈ 𝑆,∀𝑗,
𝑀∑︁
𝑖

𝑥𝑖 𝑗𝑠𝑖 ≤ 𝑐𝑠 (10)

Constraints 2-7

Constraint (10) ensures that the level of parallelism supported by
the solution to 𝑃𝑏𝑎𝑙 is equal to that found by 𝑃𝑐 .

3.3 Scaling to Large Systems
MILP approaches like PODP often have trouble scaling to large
systems because solver runtime is worst-case exponential in the
number of variables in the problem, which is 𝑂 (𝑁𝑀) for both Ob-
jectives 1 and 2. Recent work [27] has shown that, in some systems,
resource allocation problems can be solved quickly with a tech-
nique called Partitioned Optimization Problems (POP): partitioning
a large problem into smaller sub-problems to greatly reduce solver
runtime. For example, we can split a PODP problem into many
sub-problems, each containing a fraction of available shards and
servers. If we have 𝑃 partitions, this reduces the number of variables
in each MILP problem to 𝑂 (𝑁𝑀/𝑃2).

Applying POP to PODP requires a valid partitioning function
where each partition contains an equal fraction of servers and of
query load; otherwise, solutions to the partitioned problem could
violate the load balancing constraint of the unpartitioned problem.
While it is easy to create an initial valid partitioning, it is not ob-
vious how to maintain it in a long-running system where query
loads change over time and a partitioning valid in one round of
data placement may not be valid in future rounds. If we re-partition
each round of data placement naively, we will frequently move
shards between partitions and introduce unnecessary data move-
ment. To circumvent this, we make partitions sticky: in each round,
we greedily attempt to assign shards – in ascending order by load –
to the partition to which they were assigned in the previous round.
If a partition is fully loaded, we replicate or transfer its shards to
underloaded partitions.

We have analyzed the sticky partition heuristic and determined
an upper bound on the number of shard transfers it causes. For
𝑃 partitions, we define 𝛿 as the largest magnitude of the net load
change across all shards in any single partition. Define 𝑀 as the
smallest number such that each partition has𝑀 shards whose total
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load is greater than 𝛿 . Our greedy algorithm causes at most 𝑃 ∗𝑀
shards to be transferred between partitions.

Our goal is to balance the load of each partition: to replicate or
transfer shards to or from that partition so that every partition has
the same query load. Initially, each shard is assigned to exactly one
partition. For any partition 𝐴 with a load surplus and partition 𝐵

with a load deficit, replicating or transferring at most 𝑀 shards
from 𝐴 to 𝐵 is guaranteed to balance the load of either 𝐴 or 𝐵
(depending on whether the surplus on 𝐴 is larger than the deficit
on 𝐵). Thus, each of the 𝑃 partitions can be balanced in at most𝑀
shard transfers and the total number of shard transfers needed to
balance all partitions is at most 𝑃 ∗𝑀 . In practice, we expect both
𝑀 and 𝑃 to be small compared to the total number of shards.

Aswe show in Section 5, by partitioning PODP into sub-problems
we can compute data placements for large systems >100× faster
with a negligible impact on query performance. We find that as long
as the number of sub-problems is small compared to the number
of servers, increasing the number of sub-problems does not have a
significant effect on query tail latency.

4 IMPLEMENTATION
We implement PODP in Java using the CPLEX solver [8]. To run ex-
periments, we integrate PODP into Uniserve [22], a general distribu-
tion layer for systems serving data-parallel, low-latency queries. We
use PODP to replace Uniserve’s default data placement algorithm,
which balances load but does not account for query parallelism.
We run experiments with the Uniserve ports of the full-text search
system Apache Solr and the NoSQL document database MongoDB,
both of which are described in detail in the original paper [22]. We
make no other changes to Uniserve or its ports.

Data-Parallel System Simulator. To build intuition for how
PODP performs and to model PODP performance on extremely
large clusters (specifically in Figures 14 and 16), we implement a
simulator in Java that emulates the behavior of a system serving
data-parallel queries on a set of multi-core servers. Our simulator
represents queries as sets of shard accesses. Each shard access is
issued to a server and requires a set number of ticks (simulated
discrete units of time) to complete. In each round of computation,
every server in our simulated setup retrieves a shard access from a
queue of pending shard accesses and decrements its remaining ticks
by one, simulating it being scheduled onto a processor. To model
multi-core servers, we may retrieve and decrement multiple shard
accesses per server per tick. As a sanity check, we compare simula-
tor performance to Solr performance on benchmark workloads and
find they are similar, showing results in Figure 5.

5 EVALUATION
We evaluate PODP using a variety of benchmarks simulating data-
parallel query workloads. Our evaluation shows that:

• Using PODP to place data in a data-parallel system improves
query tail latency by 7%-64% compared to baseline data
placement strategies.

• The performance benefits of PODP are robust to varying
conditions, including workloads with varying query size
(Figure 11), workloads where PODP does not have accurate
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Figure 5: Throughput vs. p99 latency in Apache Solr (a) and
our simulator (b). We find simulator and Solr performance
are similar.

information on some shards (Figure 12), and workloads
with non-uniform shards (Figure 13).

• PODP scales to large systems, computing data placements
for thousands of shards and servers in seconds while con-
sistently improving query tail latency relative to baselines
(Figures 14-16).

5.1 Experimental Setup
We run experiments in three systems: Apache Solr, MongoDB, and
our simulator.

Most of our experiments are run in Apache Solr on AWS EC2
using a cluster of m5d.xlarge instances, each with four CPUs, 16 GB
of RAM, and an attached SSD.We also run experiments inMongoDB
with a similar setup. Additionally, scalability experiments were run
using our simulator (Section 4).

For each experiment, we compare the parallelism-optimizing
data placement generated using PODP to three baseline ap-
proaches. The first baseline is the data placement algorithm used
by Getafix [18], which places shards using a best-fit bin packing
approach to balance load across servers while minimizing replicas.
Our second baseline, Getafix+, augments Getafix with a heuristic
used in Druid to account for query parallelism [1]. Specifically, it
calculates the cost of assigning a shard to a server as the likelihood
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that any two shards on the same server will be scanned together,
then greedily assigns shards to servers with minimal cost. The final
baseline, naive load balancing (NLB), is generated by solving a MILP
that minimizes shard transfers while balancing load, but does not
account for query parallelism; this closely resembles techniques
used in existing systems [22, 31]. We use the same data sets and
shard sizes for PODP and for all three baselines. We configure PODP
and all three baselines to have a minimum replication factor of 1.

The data placements generated using all of these algorithms are
sensitive to the initial placement of shards, so it is not possible to
characterize their performance in a single trial. NLB placements are
especially sensitive because their level of parallelism varies greatly
across trials. Therefore, for each experiment, we run many trials.
Each trial begins with random initial data placement, uses either
NLB, Getafix, Getafix+, or PODP to generate a data placement, and
then runs a query workload. We plot the distributions of p99 query
latencies over these trials in box-and-whisker plots. The lower and
upper whiskers of each box represent the 5th and 95th percentile
p99 latencies, and the lower and upper boundaries of each box
represent the first and third quartile p99 latencies.

5.2 Experiment Workloads
We evaluate each system with a different workload. Unless other-
wise stated, each workload is run on a system with 100 shards and 5
servers, with an additional server acting as the system coordinator,
and each query accesses 3 shards.

For Apache Solr, we use queries from the Lucene nightly bench-
marks [25]. Each query is run on a dataset of 3M Wikipedia docu-
ments. This dataset is partitioned into shards by time range, and
each query searches through a specified time range (and thus a
particular set of shards) for the exact phrase "is also".

We benchmark MongoDB using YCSB [14], to simulate an ana-
lytics workload. Before running the workload, we insert 10M se-
quential items (10GB of data) into the database. We run a workload
of 100% scans, where each scan retrieves 30,000 items.

Our simulator models a distributed system running data-parallel
queries on many four-core servers. We run a synthetic time-series
workload over this simulated server setup where queries access
data stored on consecutive shards. The simulator is discussed in
more detail in Section 4.

5.3 End-to-end Benchmarks
We first benchmark the performance impact of PODP in Solr and
MongoDB. We issue queries asynchronously following a Poisson
distribution. For each data placement algorithm, we run queries on
50 randomly-initialized data placements and plot the distribution
of p99 latencies in a box-and-whisker plot.

UniformWorkload in Solr. We first measure how p99 query
latency changes as we vary offered load, showing results in Figure 6.
We find that as offered load increases, the p99 latency improvement
from parallelism optimization increases from 7% − 24% to nearly
33% − 50%. At low utilization levels, we do not expect a significant
difference in performance because there is not enough resource
contention for parallelism optimization to affect performance. This
is reflected in Figure 6 by the small differences in p99 latency at
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Figure 6: Measured throughput vs. p99 latency in Apache
Solr. PODP significantly reduces latency and provides larger
benefits at higher throughputs.
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Figure 7: Query latency CDF in Solr. PODP substantially im-
proves p99 query latency, as indicated by the vertical lines.

low offered throughputs. However, as offered load increases, re-
source contention in servers increases, magnifying the importance
of parallelism optimization.

To further investigate the effect of parallelism optimization on
latency, we run 200,000 queries in Solr at an offered throughput
of 2000 QPS and plot a CDF of their latencies, showing results in
Figure 7. We find that PODP substantially improves tail latency and
has a smaller, though still positive, effect on median latency. This
follows from our analysis in Section 2: PODP reduces maximum
server queue size, which improves tail latency but should have a
smaller effect on median latency

SkewedWorkload in Solr. In our next set of experiments, we fix
throughput at 3000 QPS and evaluate the effect of skewness on the
performance of data placement algorithms. We vary skewness by
modifying how likely the first 20 shards are to be queried relative
to the other 80 shards. This setup simulates a hotspot, where some
data items (e.g. more recent items) are far more likely to be queried
than others.

We show the effects of workload skewness on query tail latency
in Figure 8. As we can see, parallelism-optimizing data placements
provide p99 latency reductions of 54%-64%, increasing slightly with
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Figure 8: Query skewness vs. p99 latency in Apache Solr.
Skewness is defined as the percentage of queries that access
the “hot” 20% of shards in our system. PODP significantly
reduces latency and provides larger benefits at higher skew-
ness.

skew. Additionally, they have a lower variance in p99 latency com-
pared to the baselines. This is because, as we will show, skewed
workloads amplify the performance impacts of queries on a smaller
number of shards, increasing tail latencies in setups that do not
maximize parallelism.

When skewness is high, the placement of a small number of
shards has an outsized impact on query tail latencies since the
majority of accesses are to those shards. For example, in our experi-
ments, when skewness is 0.8, this means that 20 shards receive 80%
of shard accesses so the placement of these 20 shards is especially
important for optimizing query performance.

To demonstrate the importance of this effect, we run a new ex-
periment using NLB data placements where we vary the number of
shards per server while proportionally varying offered throughput
to hold constant the rate of shards accessed per server. We find that
median latency remains unchanged, but as shown in Figure 9a, tail
latency increases as the number of shards per server decrease. We
further explore this effect in the same setup in Figure 9b, finding
that as the number of shards per server decreases, the percentage
of queries accessing n-clusters increases. These findings are con-
sistent with our skewness experiment; optimizing parallelism is
especially important when the placement of a small number of
shards dominates system performance.

MongoDB Benchmarks. We next evaluate the effects of data
placement on a YCSB workload in MongoDB. As in our Solr ex-
periments, we vary offered throughput and graph the p99 latency
of queries across a range of cluster setups, showing results in Fig-
ure 10. Due to the large amount of data accessed by each query
in our scan-heavy YCSB workload, query tail latencies are much
higher and offered throughputs are much lower than in our Solr
experiments. Nevertheless, we find PODP provides similar tail la-
tency improvements of 17%-36%, demonstrating that it consistently
improves performance across a range of systems.
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Figure 9: Graph from Solr showing NLB data placements of
the number of shards per server vs. p99 latency of queries (a)
and the percentage of queries that access n-clusters (b). p99
latency is higher in setups with fewer shards because queries
are more likely to access n-clusters.

5.4 Robustness Benchmarks
We now run a set of microbenchmarks evaluating how the perfor-
mance impact of data placement is affected by conditions such as
varying query size, missing information on shards, non-uniform
shard size, and system scale.

Query Size in Solr. In this experiment, we measure how the
performance impact of data placement is affected by varying query
size, finding that PODP improves performance even for workloads
that scan large portions of a dataset. We fix offered load at 3000
queries/second and vary how many shards each query accesses.
Each shard contains 30, 000 documents. We graph how query tail
latency changes with increasing query size in Figure 11. As we can
see, parallelism-optimizing data placements provide consistent p99
latency reductions of around 24% − 39% regardless of query sizes.

Withholding Information from PODP. We now investigate
how PODP performswhen it has incomplete information on queries.
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Figure 10: Measured throughput vs. p99 latency in MongoDB.
PODP provides consistent performance improvements.
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Figure 11: Number of shards per query vs. p99 latency in
Apache Solr. PODP provides consistent performance im-
provements across a range of query sizes.
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Figure 12: Percentage of shard information withheld from
the data placement algorithm vs. p99 latency in Apache Solr.
PODP performance degrades gracefully when it is missing
information, consistently outperforming all three baselines.

We specifically examine the case where new shards are added to
the system and it has no information on how they are queried. We
model this by withholding information on a fraction of shards from
the data placement algorithm (PODP or the baselines). We vary
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Figure 13: Percentage of expensive-to-query (double-sized)
shards vs p99 latency in Solr. PODP performance improve-
ments remain consistent despite variance in shard scan times.

this fraction from 1% − 10%, where a fraction of 5% means that
we withhold information on 5% of shards from the data placement
algorithm, so it assumes those shards receive zero load and are not
part of any query’s shard sets. We show results in Figure 12 and
find that PODP performance degrades gracefully when it is missing
information, consistently outperforming all three baselines.

Non-Uniform Shard Scan Time. Next, we investigate how
PODP performs when shard scan times are non-uniform, for exam-
ple because queries access different amounts of data in different
shards. We model this by making a small number of shards hold
double the number of documents as the others, thus doubling the
scan time for any queries which access those shards. We vary the
fraction of large shards and measure query tail latency, showing
results in Figure 13. We find that PODP consistently outperforms
all three baselines with different fractions of large shards.

Scalability. Finally, we evaluate how the performance impact of
parallelism optimization changes as we scale the size of our system.
We run this experiment in simulation so we can experiment with
very large cluster sizes.We vary the number of servers in our system
setup from 50 to 1000. Every server stores 10 shards. We scale the
size of queries such that every query accesses 1% of the shards.

In order to efficiently solve the MILP, we partition it into smaller
sub-problems (as discussed in Section 3) which can be solved quickly
in parallel. The number of sub-problems is set to the number of
servers divided by the number of shards accessed per query.

We show the effects of system size on query tail latencies in
Figure 14. The performance improvements provided by PODP are
consistent regardless of system size. PODP provides p99 latency
reductions of 22% − 35% across a range of system sizes.

We now investigate the performance impact of partitioning
PODP into sub-problems. In Figure 15, we graph how the num-
ber of sub-problems used by PODP affects end-to-end optimization
time at different problem scales. We measure optimization time
on an AWS EC2 m5d.xlarge instance with four CPUs, 16 GB of
RAM, and an attached SSD. As this figure shows, using POP to split
our optimization problem into smaller sub-problems allows us to
place shards on significantly larger systems in a fraction of the time.
Importantly, we find that for any number of servers there exists
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Figure 14: Number of servers in a system vs. p99 query la-
tency in simulation. PODP provides consistent performance
improvements across a range of system sizes.
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Figure 15: Number of servers in a system vs. average optimiza-
tion time for PODP with a varying number of sub-problems,
as well as Getafix+. Splitting PODP into sub-problems dra-
matically reduces optimization time.

some number of partitions such that PODP solves in comparable
time as the best-performing baseline, Getafix+, while (as we show
in Figure 16) substantially improving query tail latency.

We also investigate how partitioning PODP into sub-problems
affects solution quality. In Figure 16, we graph how the number of
sub-problems used by PODP affects query tail latency at different
problem scales. We find that as long as the number of sub-problems
is small compared to the number of servers, increasing the number
of sub-problems does not have a significant effect on query tail
latency. Additionally, solutions are of a significantly higher quality
than Getafix+, the best-performing baseline.

6 RELATEDWORK
Load Balancing and Data Placement. Many systems use data

placement algorithms to balance query load across servers in a
cluster. Getafix [18] proposes a load balancer for Druid that treats
load balancing as a bin-packing problem. NashDB [24] proposes
a general-purpose OLAP load balancer using a greedy algorithm
inspired by economic models which has users assign a monetary
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Figure 16: Number of servers in a system vs. p99 query la-
tency in simulation for PODP with a varying number of
sub-problems, as well as Getafix+. As long as the number of
sub-problems is small compared to the number of servers,
splitting the optimization problem does not have a signifi-
cant effect on query tail latency.

“value” to each query. Several information retrieval systems use
greedy algorithms to assign terms to servers to balance query
load [21, 26]. General-purpose sharding systems such as Slicer [10],
Shard Manager [23], and Uniserve [22] also provide load balancing
as a service, using a variety of customizable algorithms.

We do not know of any general-purpose query parallelism-
optimizing algorithm like PODP. However, some systems, like
Apache Druid [32], use domain-specific heuristics to place data
in a parallelism-optimizing manner (e.g., spreading new data across
many servers because it is likely to be queried), finding this im-
proves performance at scale [1]. Additionally, some proposed data
placement algorithms for transactional systems do the opposite:
they co-locate data items which are frequently queried together
to minimize the frequency of distributed transactions. For exam-
ple, Schism [15] models a database workload as a graph where
tuples are vertices and transactions are edges, then partitions the
graph to determine tuple placements that minimize the number
of distributed transactions. Accordion [28] uses linear program-
ming to determine the placement of static data partitions while
considering their affinity–how frequently they are accessed by
the same transactions. Clay [29] builds on Accordion to consider
dynamically-changing data partitions, automatically creating new
partitions from hot tuples.

Optimization Problems in Resource Management. Systems
resource management problems like parallelism-optimizing data
placement can often be expressed as mathematical optimization
problems. For example, E-Store [31] proposes a linear program for
load balancing similar to the load balancing component of PODP,
although they do not consider parallelism. As mentioned earlier,
Accordion [28] and Clay [29] also use linear programming to mini-
mize distributed transactions in transactional databases. Because
linear programs scale poorly, these systems have difficulty manag-
ing large problem sizes and some fall back to heuristics at scale [31].
However, newly developed techniques like partitioned optimiza-
tion problems (POP) [27] allow some mathematical optimization
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problems for resource management to be solved quickly at large
scales with minimal loss of optimality.

A related problem to data placement is the online scheduling
of queries over a given placement, where a schedule can reduce
latency by taking advantage of replicas to avoid server contention.
This is a form of online job-shop scheduling, a classical optimiza-
tion problem where jobs (queries) are scheduled to shops (servers)
while optimizing a global objective, such as makespan (latency);
such problems have been extensively studied in existing litera-
ture [19, 20, 33]. Existing scheduling algorithms do not address
the data placement problem, which can be viewed as the set-up
stage that determines the allocation of equipment (data shards) to
shops, whereby jobs can then be scheduled across shops that hold
the necessary equipment. Our approach to data placement with
PODP complements an online scheduling algorithm by minimizing
the clustering of known queries, which we have shown to reduce
server contention.

Optimization in Batch Processing Systems. Batch process-
ing systems such as MapReduce [17], Hadoop [30] and Spark [34]
operate at multi-second timescales and so can feasibly move data
between servers as part of query execution, unlike the low-latency
systems we target. This allows them to obtain high parallelism by
moving data even if the original data placement was not highly
parallel, thus reducing the necessity of optimizations like PODP.
It also enables many optimizations based on data movement, such
as straggler mitigation [13], speculative execution [35], and task
stealing [11] which are not practical for systems that require low
query latency.

One batch processing system that leverages ideas similar to ours
is the caching service PACMan [12]. PACMan recognizes that batch
processing jobs run as fast as their slowest task, so caching task
inputs only improves performance if all tasks in a job can be cached
and sped up. Thus, it provides cache access in an all-or-nothing
manner, either caching the inputs of every task in a job or none of
them. This idea of providing cache access for every task in a job in
parallel resembles PODP’s objective of minimizing clustering by
parallelizing queries across as many servers as possible, although
unlike PODP, PACMan does attempt to spread out cache locations
or consider task load balancing.

7 CONCLUSION
In this paper, we analyze the importance of query parallelism to
performance for data-parallel query workloads. We demonstrate
both in principle and empirically that if queries frequently access
co-located data items, resource contention on individual machines
causes significant spikes in query tail latency. We propose PODP,
a novel parallelism-optimizing data placement algorithm which
formulates data placement as a mixed-integer linear program. To
make this problem tractable, we define a new linearly-computable
measure of query parallelism to optimize, and adapt an approach for
partitioning the optimization problem into smaller sub-problems
to scale to large system sizes. We apply our algorithm to popular
systems such as Solr and MongoDB and show that it improves
performance by 7-64% compared to several baselines.
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