
This paper is included in the Proceedings of the 
13th USENIX Symposium on Operating Systems Design 

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the 
13th USENIX Symposium on Operating Systems 

Design and Implementation 
is sponsored by USENIX.

Arachne: Core-Aware Thread Management
Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft,  

and John Ousterhout, Stanford University

https://www.usenix.org/conference/osdi18/presentation/qin



Arachne: Core-Aware Thread Management
Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout

{hq6,qianli,jspeiser,kraftp,ouster}@cs.stanford.edu
Stanford University

Abstract
Arachne is a new user-level implementation of threads that
provides both low latency and high throughput for appli-
cations with extremely short-lived threads (only a few mi-
croseconds). Arachne is core-aware: each application de-
termines how many cores it needs, based on its load; it al-
ways knows exactly which cores it has been allocated, and
it controls the placement of its threads on those cores. A
central core arbiter allocates cores between applications.
Adding Arachne to memcached improved SLO-compliant
throughput by 37%, reduced tail latency by more than 10x,
and allowed memcached to coexist with background ap-
plications with almost no performance impact. Adding
Arachne to the RAMCloud storage system increased its
write throughput by more than 2.5x. The Arachne thread-
ing library is optimized to minimize cache misses; it can
initiate a new user thread on a different core (with load bal-
ancing) in 320 ns. Arachne is implemented entirely at user
level on Linux; no kernel modifications are needed.

1 Introduction
Advances in networking and storage technologies have
made it possible for datacenter services to operate at ex-
ceptionally low latencies [5]. As a result, a variety of low-
latency services have been developed in recent years, in-
cluding FaRM [11], Memcached [23], MICA [20], RAM-
Cloud [30], and Redis [34]. They offer end-to-end re-
sponse times as low as 5 µs for clients within the same
datacenter and they have internal request service times as
low as 1–2 µs. These systems employ a variety of new
techniques to achieve their low latency, including polling
instead of interrupts, kernel bypass, and run to comple-
tion [6, 31].

However, it is difficult to construct services that pro-
vide both low latency and high throughput. Techniques
for achieving low latency, such as reserving cores for peak
throughput or using polling instead of interrupts, waste
resources. Multi-level services, in which servicing one re-
quest may require nested requests to other servers (such
as for replication), create additional opportunities for re-
source underutilization, particularly if they use polling to
reduce latency. Background activities within a service,
such as garbage collection, either require additional re-
served (and hence underutilized) resources, or risk in-
terference with foreground request servicing. Ideally, it
should be possible to colocate throughput-oriented ser-
vices such as MapReduce [10] or video processing [22]
with low-latency services, such that resources are fully

occupied by the throughput-oriented services when not
needed by the low-latency services. However, this is rarely
attempted in practice because it impacts the performance
of the latency-sensitive services.

One of the reasons it is difficult to combine low latency
and high throughput is that applications must manage their
parallelism with a virtual resource (threads); they cannot
tell the operating system how many physical resources
(cores) they need, and they do not know which cores have
been allocated for their use. As a result, applications can-
not adjust their internal parallelism to match the resources
available to them, and they cannot use application-specific
knowledge to optimize their use of resources. This can
lead to both under-utilization and over-commitment of
cores, which results in poor resource utilization and/or
suboptimal performance. The only recourse for appli-
cations is to pin threads to cores; this results in under-
utilization of cores within the application and does not
prevent other applications from being scheduled onto the
same cores.

Arachne is a thread management system that solves
these problems by giving applications visibility into the
physical resources they are using. We call this approach
core-aware thread management. In Arachne, application
threads are managed entirely at user level; they are not vis-
ible to the operating system. Applications negotiate with
the system over cores, not threads. Cores are allocated
for the exclusive use of individual applications and remain
allocated to an application for long intervals (tens of mil-
liseconds). Each application always knows exactly which
cores it has been allocated and it decides how to sched-
ule application threads on cores. A core arbiter decides
how many cores to allocate to each application, and ad-
justs the allocations in response to changing application
requirements.

User-level thread management systems have been im-
plemented many times in the past [39, 14, 4] and the basic
features of Arachne were prototyped in the early 1990s in
the form of scheduler activations [2]. Arachne is novel in
the following ways:
• Arachne contains mechanisms to estimate the number

of cores needed by an application as it runs.
• Arachne allows each application to define a core pol-

icy, which determines at runtime how many cores the
application needs and how threads are placed on the
available cores.

• The Arachne runtime was designed to minimize cache
misses. It uses a novel representation of scheduling

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    145



information with no ready queues, which enables low-
latency and scalable mechanisms for thread creation,
scheduling, and synchronization.

• Arachne provides a simpler formulation than sched-
uler activations, based on the use of one kernel thread
per core.

• Arachne runs entirely outside the kernel and needs
no kernel modifications; the core arbiter is imple-
mented at user level using the Linux cpuset mech-
anism. Arachne applications can coexist with tradi-
tional applications that do not use Arachne.

We have implemented the Arachne runtime and core
arbiter in C++ and evaluated them using both synthetic
benchmarks and the memcached and RAMCloud storage
systems. Arachne can initiate a new thread on a different
core (with load balancing) in about 320 ns, and an appli-
cation can obtain an additional core from the core arbiter
in 20–30 µs. When Arachne was added to memcached, it
reduced tail latency by more than 10x and allowed 37%
higher throughput at low latency. Arachne also improved
performance isolation; a background video processing ap-
plication could be colocated with memcached with almost
no impact on memcached’s latency. When Arachne was
added to the RAMCloud storage system, it improved write
throughput by more than 2.5x.

2 The Threading Problem
Arachne was motivated by the challenges in creating ser-
vices that process very large numbers of very small re-
quests. These services can be optimized for low latency or
for high throughput, but it is difficult to achieve both with
traditional threads implemented by the operating system.

As an example, consider memcached [23], a widely
used in-memory key-value-store. Memcached processes
requests in about 10 µs. Kernel threads are too expen-
sive to create a new one for each incoming request, so
memcached uses a fixed-size pool of worker threads. New
connections are assigned statically to worker threads in a
round-robin fashion by a separate dispatch thread.

The number of worker threads is fixed when mem-
cached starts, which results in several inefficiencies. If
the number of cores available to memcached is smaller
than the number of workers, the operating system will
multiplex workers on a single core, resulting in long de-
lays for requests sent to descheduled workers. For best
performance, one core must be reserved for each worker
thread. If background tasks are run on the machine during
periods of low load, they are likely to interfere with the
memcached workers, due to the large number of distinct
worker threads. Furthermore, during periods of low load,
each worker thread will be lightly loaded, increasing the
risk that its core will enter power-saving states with high-
latency wakeups. Memcached would perform better if it
could scale back during periods of low load to use a smaller

number of kernel threads (and cores) more intensively.
In addition, memcached’s static assignment of con-

nections to workers can result in load imbalances under
skewed workloads, with some worker threads overloaded
and others idle. This can impact both latency and through-
put.

The RAMCloud storage system provides another ex-
ample [30]. RAMCloud is an in-memory key-value store
that processes small read requests in about 2 µs. Like
memcached, it is based on kernel threads. A dispatch
thread handles all network communication and polls the
NIC for incoming packets using kernel bypass. When a
request arrives, the dispatch thread delegates it to one of a
collection of worker threads for execution; this approach
avoids problems with skewed workloads. The number of
active worker threads varies based on load. The maximum
number of workers is determined at startup, which creates
issues similar to memcached.

RAMCloud implements nested requests, which result
in poor resource utilization because of microsecond-scale
idle periods that cannot be used. When a worker thread
receives a write request, it sends copies of the new value
to backup servers and waits for those requests to return
before responding to the original request. All of the repli-
cation requests complete within 7-8 µs, so the worker
busy-waits for them. If the worker were to sleep, it would
take several microseconds to wake it up again; in addi-
tion, context-switching overheads are too high to get much
useful work done in such a short time. As a result, the
worker thread’s core is wasted for 70-80% of the time to
process a write request; write throughput for a server is
only about 150 kops/sec for small writes, compared with
about 1 Mops/sec for small reads.

The goal for Arachne is to provide a thread management
system that allows a better combination of low latency and
high throughput. For example, each application should
match its workload to available cores, taking only as many
cores as needed and dynamically adjusting its internal par-
allelism to reflect the number of cores allocated to it. In ad-
dition, Arachne should provide an implementation of user-
level threads that is efficient enough to be used for very
short-lived threads, and that allows useful work to be done
during brief blockages such as those for nested requests.

Although some existing applications will benefit from
Arachne, we expect Arachne to be used primarily for new
granular applications whose threads have lifetimes of
only a few microseconds. These applications are diffi-
cult or impossible to build today because of inefficiencies
in current threading infrastructure.

3 Arachne Overview
Figure 1 shows the overall architecture of Arachne. Three
components work together to implement Arachne threads.
The core arbiter consists of a stand-alone user process plus

146    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



sockets

Application

Arbiter Library

Core Ar

shared
memory

Arachne
Runtime

Core
Policy 1

Application

Arbiter Library

Arachne
Runtime

Core
Policy 2

Application

Arbiter Library

Custom
Thread Library

Core Arbiter

Figure 1: The Arachne architecture. The core arbiter
communicates with each application using one socket for
each kernel thread in the application, plus one page of
shared memory.

a small library linked into each application. The Arachne
runtime and core policies are libraries linked into applica-
tions. Different applications can use different core poli-
cies. An application can also substitute its own threading
library for the Arachne runtime and core policy, while still
using the core arbiter.

The core arbiter is a user-level process that manages
cores and allocates them to applications. It collects in-
formation from each application about how many cores
it needs and uses a simple priority mechanism to divide
the available cores among competing applications. The
core arbiter adjusts the core allocations as application re-
quirements change. Section 4 describes the core arbiter in
detail.

The Arachne runtime creates several kernel threads and
uses them to implement user threads, which are used by
Arachne applications. The Arachne user thread abstrac-
tion contains facilities similar to thread packages based
on kernel threads, including thread creation and deletion,
locks, and condition variables. However, all operations
on user threads are carried out entirely at user level with-
out making kernel calls, so they are an order of magni-
tude faster than operations on kernel threads. Section 5
describes the implementation of the Arachne runtime in
more detail.

The Arachne runtime works together with a core policy,
which determines how cores are used by that application.
The core policy computes the application’s core require-
ments, using performance information gathered by the
Arachne runtime. It also determines which user threads
run on which cores. Each application chooses its core pol-
icy. Core policies are discussed in Section 6.

Arachne uses kernel threads as a proxy for cores. Each
kernel thread created by the runtime executes on a separate
core and has exclusive access to that core while it is run-
ning. When the arbiter allocates a core to an application,
it unblocks one of the application’s kernel threads on that
core; when the core is removed from an application, the
kernel thread running on that core blocks. The Arachne
runtime runs a simple dispatcher in each kernel thread,
which multiplexes several user threads on the associated
core.

Arachne uses a cooperative multithreading model for

user threads: the runtime does not preempt a user thread
once it has begun executing. If a user thread needs to exe-
cute for a long time without blocking, it must occasionally
invoke a yield method, which allows other threads to
run before the calling thread continues. We expect most
threads to either block or complete quickly, so it should
rarely be necessary to invoke yield.

One potential problem with a user-level implementation
of threads is that a user thread might cause the underlying
kernel thread to block. This could happen, for example, if
the user thread invokes a blocking kernel call or incurs a
page fault. This prevents the kernel thread from running
other user threads until the kernel call or page fault com-
pletes. Previous implementations of user-level threads
have attempted to work around this inefficiency in a variety
of ways, often involving complex kernel modifications.

Arachne does not take any special steps to handle block-
ing kernel calls or page faults. Most modern operating
systems support asynchronous I/O, so I/O can be imple-
mented without blocking the kernel thread. Paging is
almost never cost-effective today, given the low cost of
memory and the large sizes of memories. Modern servers
rarely incur page faults except for initial loading, such as
when an application starts or a file is mapped into virtual
memory. Thus, for simplicity, Arachne does not attempt
to make use of the time when a kernel thread is blocked for
a page fault or kernel call.

Note: we use the term core to refer to any hardware
mechanism that can support an independent thread of
computation. In processors with hyperthreading, we think
of each hyperthread as a separate logical core, even though
some of them share a single physical core.

4 The Core Arbiter
This section describes how the core arbiter claims con-
trol over (most of) the system’s cores and allocates them
among applications. The core arbiter has three interesting
features. First, it implements core management entirely
at user level using existing Linux mechanisms; it does not
require any kernel changes. Second, it coexists with exist-
ing applications that don’t use Arachne. And third, it takes
a cooperative approach to core management, both in its
priority mechanism and in the way it preempts cores from
applications.

The core arbiter runs as a user process with root priv-
ilege and uses the Linux cpuset mechanism to manage
cores. A cpuset is a collection of one or more cores and one
or more banks of memory. At any given time, each kernel
thread is assigned to exactly one cpuset, and the Linux
scheduler ensures that the thread executes only on cores in
that cpuset. By default, all threads run in a cpuset contain-
ing all cores and all memory banks. The core arbiter uses
cpusets to allocate specific cores to specific applications.

The core arbiter divides cores into two groups: man-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    147



aged cores and unmanaged cores. Managed cores are allo-
cated by the core arbiter; only the kernel threads created by
Arachne run on these cores. Unmanaged cores continue to
be scheduled by Linux. They are used by processes that do
not use Arachne, and also by the core arbiter itself. In addi-
tion, if an Arachne application creates new kernel threads
outside Arachne, for example, using std::thread,
these threads will run on the unmanaged cores.

When the core arbiter starts up, it creates one cpuset for
unmanaged cores (the unmanaged cpuset) and places all
of the system’s cores into that set. It then assigns every
existing kernel thread (including itself) to the unmanaged
cpuset; any new threads spawned by these threads will also
run on this cpuset. The core arbiter also creates one man-
aged cpuset corresponding to each core, which contains
that single core but initially has no threads assigned to it.
To allocate a core to an Arachne application, the arbiter re-
moves that core from the unmanaged cpuset and assigns an
Arachne kernel thread to the managed cpuset for that core.
When a core is no longer needed by any Arachne applica-
tion, the core arbiter adds the core back to the unmanaged
cpuset.

This scheme allows Arachne applications to coexist
with traditional applications whose threads are managed
by the Linux kernel. Arachne applications receive prefer-
ential access to cores, except that the core arbiter reserves
at least one core for the unmanaged cpuset.

The Arachne runtime communicates with the core ar-
biter using three methods in the arbiter’s library package:
• setRequestedCores: invoked by the runtime

whenever its core needs change; indicates the total
number of cores needed by the application at various
priority levels (see below for details).

• blockUntilCoreAvailable: invoked by a ker-
nel thread to identify itself to the core arbiter and put
the kernel thread to sleep until it is assigned a core. At
that point the kernel thread wakes up and this method
returns the identifier of the assigned core.

• mustReleaseCore: invoked periodically by the
runtime; a true return value means that the calling
kernel thread should invoke blockUntilCore-
Available to return its core to the arbiter.

Normally, the Arachne runtime handles all communica-
tion with the core arbiter, so these methods are invisible
to applications. However, an application can implement
its own thread and core management by calling the arbiter
library package directly.

The methods described above communicate with the
core arbiter using a collection of Unix domain sockets and
a shared memory page (see Figure 1). The arbiter library
opens one socket for each kernel thread. This socket is
used to send requests to the core arbiter, and it is also used
to put the kernel thread to sleep when it has no assigned
core. The shared memory page is used by the core arbiter

to pass information to the arbiter library; it is written by
the core arbiter and is read-only to the arbiter library.

When the Arachne runtime starts up, it invokes set-
RequestedCores to specify the application’s initial
core requirements;setRequestedCores sends a mes-
sage to the core arbiter over a socket. Then the runtime
creates one kernel thread for each core on the machine;
all of these threads invoke blockUntilCoreAvail-
able. blockUntilCoreAvailable sends a request
to the core arbiter over the socket belonging to that ker-
nel thread and then attempts to read a response from the
socket. This has two effects: first, it notifies the core ar-
biter that the kernel thread is available for it to manage
(the request includes the Linux identifier for the thread);
second, the socket read puts the kernel thread to sleep.

At this point the core arbiter knows about the applica-
tion’s core requirements and all of its kernel threads, and
the kernel threads are all blocked. When the core arbiter
decides to allocate a core to the application, it chooses one
of the application’s blocked kernel threads to run on that
core. It assigns that thread to the cpuset corresponding to
the allocated core and then sends a response message back
over the thread’s socket. This causes the thread to wake up,
and Linux will schedule the thread on the given core; the
blockUntilCoreAvailable method returns, with
the core identifier as its return value. The kernel thread
then invokes the Arachne dispatcher to run user threads.

If the core arbiter wishes to reclaim a core from an ap-
plication, it asks the application to release the core. The
core arbiter does not unilaterally preempt cores, since the
core’s kernel thread might be in an inconvenient state
(e.g. it might have acquired an important spin lock);
abruptly stopping it could have significant performance
consequences for the application. So, the core arbiter sets
a variable in the shared memory page, indicating which
core(s) should be released. Then it waits for the applica-
tion to respond.

Each kernel thread is responsible for testing the infor-
mation in shared memory at regular intervals by invoking
mustReleaseCore. The Arachne runtime does this in
its dispatcher. If mustReleaseCore returns true, then
the kernel thread cleans up as described in Section 5.4 and
invokes blockUntilCoreAvailable. This notifies
the core arbiter and puts the kernel thread to sleep. At this
point, the core arbiter can reallocate the core to a different
application.

The communication mechanism between the core ar-
biter and applications is intentionally asymmetric: re-
quests from applications to the core arbiter use sockets,
while requests from the core arbiter to applications use
shared memory. The sockets are convenient because they
allow the core arbiter to sleep while waiting for requests;
they also allow application kernel threads to sleep while
waiting for cores to be assigned. Socket communication is

148    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



relatively expensive (several microseconds in each direc-
tion), but it only occurs when application core require-
ments change, which we expect to be infrequent. The
shared memory page is convenient because it allows the
Arachne runtime to test efficiently for incoming requests
from the core arbiter; these tests are made frequently (ev-
ery pass through the user thread dispatcher), so it is impor-
tant that they are fast and do not involve kernel calls.

Applications can delay releasing cores for a short time
in order to reach a convenient stopping point, such as a
time when no locks are held. The Arachne runtime will not
release a core until the dispatcher is invoked on that core,
which happens when a user thread blocks, yields, or exits.

If an application fails to release a core within a timeout
period (currently 10 ms), then the core arbiter will forcibly
reclaim the core. It does this by reassigning the core’s ker-
nel thread to the unmanaged cpuset. The kernel thread will
be able to continue executing, but it will probably experi-
ence degraded performance due to interference from other
threads in the unmanaged cpuset.

The core arbiter uses a simple priority mechanism for
allocating cores to applications. Arachne applications can
request cores on different priority levels (the current im-
plementation supports eight). The core arbiter allocates
cores from highest priority to lowest, so low-priority appli-
cations may receive no cores. If there are not enough cores
for all of the requests at a particular level, the core arbiter
divides the cores evenly among the requesting applica-
tions. The core arbiter repeats this computation whenever
application requests change. The arbiter allocates all of
the hyperthreads of a particular hardware core to the same
application whenever possible. The core arbiter also at-
tempts to keep all of an application’s cores on the same
socket.

This policy for core allocation assumes that applications
(and their users) will cooperate in their choice of priority
levels: a misbehaving application could starve other appli-
cations by requesting all of its cores at the highest priority
level. Anti-social behavior could be prevented by requir-
ing applications to authenticate with the core arbiter when
they first connect, and allowing system administrators to
set limits for each application or user. We leave such a
mechanism to future work.

5 The Arachne Runtime
This section discusses how the Arachne runtime imple-
ments user threads. The most important goal for the run-
time is to provide a fast and scalable implementation of
user threads for modern multi-core hardware. We want
Arachne to support granular computations, which consist
of large numbers of extremely short-lived threads. For ex-
ample, a low latency server might create a new thread for
each incoming request, and the request might take only a
microsecond or two to process; the server might process

millions of these requests per second.

5.1 Cache-optimized design
The performance of the Arachne runtime is dominated by
cache misses. Most threading operations, such as creat-
ing a thread, acquiring a lock, or waking a blocked thread,
are relatively simple, but they involve communication be-
tween cores. Cross-core communication requires cache
misses. For example, to transfer a value from one core
to another, it must be written on the source core and read
on the destination core. This takes about three cache miss
times: the write will probably incur a cache miss to first
read the data; the write will then invalidate the copy of the
data in the destination cache, which takes about the same
time as a cache miss; finally, the read will incur a cache
miss to fetch the new value of the data. Cache misses can
take from 50-200 cycles, so even if an operation requires
only a single cache miss, the miss is likely to cost more
than all of the other computation for the operation. On our
servers, the cache misses to transfer a value from one core
to another in the same socket take 7-8x as long as a context
switch between user threads on the same core. Transfers
between sockets are even more expensive. Thus, our most
important goal in implementing user threads was to mini-
mize cache misses.

The effective cost of a cache miss can be reduced by per-
forming other operations concurrently with the miss. For
example, if several cache misses occur within a few in-
structions of each other, they can all be completed for the
cost of a single miss (modern processors have out-of-order
execution engines that can continue executing instructions
while waiting for cache misses, and each core has multi-
ple memory channels). Thus, additional cache misses are
essentially free. However, modern processors have an out-
of-order execution limit of about 100 instructions, so code
must be designed to concentrate likely cache misses near
each other.

Similarly, a computation that takes tens of nanoseconds
in isolation may actually have zero marginal cost if it oc-
curs in the vicinity of a cache miss; it will simply fill the
time while the cache miss is being processed. Section 5.3
will show how the Arachne dispatcher uses this technique
to hide the cost of seemingly expensive code.

5.2 Thread creation
Many user-level thread packages, such as the one in
Go [14], create new threads on the same core as the par-
ent; they use work stealing to balance load across cores.
This avoids cache misses at thread creation time. How-
ever, work stealing is an expensive operation (it requires
cache misses), which is particularly noticeable for short-
lived threads. Work stealing also introduces a time lag be-
fore a thread is stolen to an unloaded core, which impacts
service latency. For Arachne we decided to perform load-
balancing at thread creation time; our goal is to get a new

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    149



thread on an unloaded core as quickly as possible. By op-
timizing this mechanism based on cache misses, we were
able to achieve thread creation times competitive with sys-
tems that create child threads on the parent’s core.

Cache misses can occur during thread creation for the
following reasons:
• Load balancing: Arachne must choose a core for the

new thread in a way that balances load across available
cores; cache misses are likely to occur while fetching
shared state describing current loads.

• State transfer: the address and arguments for the
thread’s top-level method must be transferred from the
parent’s core to the child’s core.

• Scheduling: the parent must indicate to the child’s
core that the child thread is runnable.

• Thread context: the context for a thread consists of
its call stack, plus metadata used by the Arachne run-
time, such as scheduling state and saved execution
state when the thread is not running. Depending on
how this information is managed, it can result in addi-
tional cache misses.

We describe below how Arachne can create a new user
thread in four cache miss times.

In order to minimize cache misses for thread contexts,
Arachne binds each thread context to a single core (the
context is only used by a single kernel thread). Each user
thread is assigned to a thread context when it is created,
and the thread executes only on the context’s associated
core. Most threads live their entire life on a single core.
A thread moves to a different core only as part of an ex-
plicit migration. This happens only in rare situations such
as when the core arbiter reclaims a core. A thread context
remains bound to its core after its thread completes, and
Arachne reuses recently-used contexts when creating new
threads. If threads have short lifetimes, it is likely that the
context for a new thread will already be cached.

To create a new user thread, the Arachne runtime must
choose a core for the thread and allocate one of the thread
contexts associated with that core. Each of these opera-
tions will probably result in cache misses, since they ma-
nipulate shared state. In order to minimize cache misses,
Arachne uses the same shared state to perform both op-
erations simultaneously. The state consists of a 64-bit
maskAndCount value for each active core. 56 bits of the
value are a bit mask indicating which of the core’s thread
contexts are currently in use, and the remaining 8 bits are
a count of the number of ones in the mask.

When creating new threads, Arachne uses the “power
of two choices” approach for load balancing [26]. It se-
lects two cores at random, reads their maskAndCount
values, and selects the core with the fewest active thread
contexts. This will likely result in a cache miss for each
maskAndCount, but they will be handled concurrently
so the total delay is that of a single miss. Arachne then

scans the mask bits for the chosen core to find an avail-
able thread context and uses an atomic compare-and-swap
operation to update the maskAndCount for the chosen
core. If the compare-and-swap fails because of a concur-
rent update, Arachne rereads themaskAndCount for the
chosen core and repeats the process of allocating a thread
context. This creation mechanism is scalable: with a large
number of cores, multiple threads can be created simulta-
neously on different cores.

Once a thread context has been allocated, Arachne
copies the address and arguments for the thread’s top-level
method into the context and schedules the thread for ex-
ecution by setting a word-sized variable in the context to
indicate that the thread is runnable. In order to minimize
cache misses, Arachne uses a single cache line to hold all
of this information. This limits argument lists to 6 one-
word parameters on machines with 64-byte cache lines;
larger parameter lists must be passed by reference, which
will result in additional cache misses.

With this mechanism, a new thread can be invoked on
a different core in four cache miss times. One cache miss
is required to read the maskAndCount and three cache
miss times are required to transfer the line containing the
method address and arguments and the scheduling flag, as
described in Section 5.1.

The maskAndCount variable limits Arachne to 56
threads per core at a given time. As a result, programming
models that rely on large numbers of blocked threads may
be unsuitable for use with Arachne.

5.3 Thread scheduling
The traditional approach to thread scheduling uses one
or more ready queues to identify runnable threads (typ-
ically one queue per core, to reduce contention), plus a
scheduling state variable for each thread, which indicates
whether that thread is runnable or blocked. This represen-
tation is problematic from the standpoint of cache misses.
Adding or removing an entry to/from a ready queue re-
quires updates to multiple variables. Even if the queue is
lockless, this is likely to result in multiple cache misses
when the queue is shared across cores. Furthermore, we
expect sharing to be common: a thread must be added to
the ready queue for its core when it is awakened, but the
wakeup typically comes from a thread on a different core.

In addition, the scheduling state variable is subject to
races. For example, if a thread blocks on a condition vari-
able, but another thread notifies the condition variable be-
fore the blocking thread has gone to sleep, a race over the
scheduling state variable could cause the wakeup to be
lost. This race is typically eliminated with a lock that con-
trols access to the state variable. However, the lock results
in additional cache misses, since it is shared across cores.

In order to minimize cache misses, Arachne does not
use ready queues. Instead of checking a ready queue, the
Arachne dispatcher repeatedly scans all of the active user

150    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



thread contexts associated with the current core until it
finds one that is runnable. This approach turns out to be
relatively efficient, for two reasons. First, we expect only
a few thread contexts to be occupied for a core at a given
time (there is no need to keep around blocked threads for
intermittent tasks; a new thread can be created for each
task). Second, the cost of scanning the active thread con-
texts is largely hidden by an unavoidable cache miss on the
scheduling state variable for the thread that woke up. This
variable is typically modified by a different core to wake
up the thread, which means the dispatcher will have to take
a cache miss to observe the new value. 100 or more cycles
elapse between when the previous value of the variable
is invalidated in the dispatcher’s cache and the new value
can be fetched; a large number of thread contexts can be
scanned during this time. Section 7.4 evaluates the cost of
this approach.

Arachne also uses a new lockless mechanism for
scheduling state. The scheduling state of a thread is repre-
sented with a 64-bit wakeupTime variable in its thread
context. The dispatcher considers a thread runnable if
its wakeupTime is less than or equal to the processor’s
fine-grain cycle counter. Before transferring control to a
thread, the dispatcher sets its wakeupTime to the largest
possible value. wakeupTime doesn’t need to be modi-
fied when the thread blocks: the large value will prevent
the thread from running again. To wake up the thread,
wakeupTime is set to 0. This approach eliminates the
race condition described previously, since wakeupTime
is not modified when the thread blocks; thus, no synchro-
nization is needed for access to the variable.

The wakeupTime variable also supports timer-based
wakeups. If a thread wishes to sleep for a given time
period, or if it wishes to add a timeout to some other
blocking operation such as a condition wait, it can set
wakeupTime to the desired wakeup time before block-
ing. A single test in the Arachne dispatcher detects both
normal unblocks and timer-based unblocks.

Arachne exports the wakeupTime mechanism to ap-
plications with two methods:
• block(time) will block the current user thread.

The time argument is optional; if it is specified,
wakeupTime is set to this value (using compare-and-
swap to detect concurrent wakeups).

• signal(thread) will set the given user thread’s
wakeupTime to 0.

These methods make it easy to construct higher-level syn-
chronization and scheduling operators. For example, the
yieldmethod, which is used in cooperative multithread-
ing to allow other user threads to run, simply invokes
block(0).

5.4 Adding and releasing cores
When the core arbiter allocates a new core to an applica-
tion, it wakes up one of the kernel threads that was blocked

in blockUntilCoreAvailable. The kernel thread
notifies the core policy of the new core as described in Sec-
tion 6 below, then it enters the Arachne dispatcher loop.

When the core arbiter decides to reclaim a core from an
application, mustReleaseCore will return true in the
Arachne dispatcher running on the core. The kernel thread
modifies its maskAndCount to prevent any new threads
from being placed on it, then it notifies the core policy of
the reclamation. If any user threads exist on the core, the
Arachne runtime migrates them to other cores. To migrate
a thread, Arachne selects a new core (destination core) and
reserves an unoccupied thread context on that core using
the same mechanism as for thread creation. Arachne then
exchanges the context of the thread being migrated with
the unoccupied context, so that the thread’s context is re-
bound to the destination core and the unused context from
the destination core is rebound to the source core. Once
all threads have been migrated away, the kernel thread on
the reclaimed core invokes blockUntilCoreAvail-
able. This notifies the core arbiter that the core is no
longer in use and puts the kernel thread to sleep.

6 Core Policies
One of our goals for Arachne is to give applications pre-
cise control over their usage of cores. For example, in
RAMCloud the central dispatch thread is usually the per-
formance bottleneck. Thus, it makes sense for the dis-
patch thread to have exclusive use of a core. Furthermore,
the other hyperthread on the same physical core should be
idle (if both hyperthreads are used simultaneously, they
each run about 30% slower than if only one hyperthread is
in use). In other applications it might be desirable to colo-
cate particular threads on hyperthreads of the same core or
socket, or to force all low-priority background threads to
execute on a single core in order to maximize the resources
available for foreground request processing.

The Arachne runtime does not implement the policies
for core usage. These are provided in a separate core pol-
icy module. Each application selects a particular core pol-
icy at startup. Writing high-performance core policies
is likely to be challenging, particularly for policies that
deal with NUMA issues and hyperthreads. We hope that
a small collection of reusable policies can be developed to
meet the needs of most applications, so that it will rarely
be necessary for an application developer to implement a
custom core policy.

In order to manage core usage, the core policy must
know which cores have been assigned to the application.
The Arachne runtime provides this information by invok-
ing a method in the core policy whenever the application
gains or loses cores.

When an application creates a new user thread, it spec-
ifies an integer thread class for the thread. Thread classes
are used by core policies to manage user threads; each

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    151



thread class corresponds to a particular level of service,
such as “foreground thread” or “background thread.” Each
core policy defines its own set of valid thread classes. The
Arachne runtime stores thread classes with threads, but
has no knowledge of how they are used.

The core policy uses thread classes to manage the place-
ment of new threads. When a new thread is created,
Arachne invokes a method getCores in the core pol-
icy, passing it the thread’s class. The getCores method
uses the thread class to select one or more cores that are
acceptable for the thread. The Arachne runtime places the
new thread on one of those cores using the “power of two
choices” mechanism described in Section 5. If the core
policy wishes to place the new thread on a specific core,
getCores can return a list with a single entry. Arachne
also invokes getCores to find a new home for a thread
when it must be migrated as part of releasing a core.

One of the unusual features of Arachne is that each ap-
plication is responsible for determining how many cores
it needs; we call this core estimation, and it is handled
by the core policy. The Arachne runtime measures two
statistics for each core, which it makes available to the
core policy for its use in core estimation. The first statis-
tic is utilization, which is the average fraction of time that
each Arachne kernel thread spends executing user threads.
The second statistic is load factor, which is an estimate of
the average number of runnable user threads on that core.
Both of these are computed with a few simple operations
in the Arachne dispatching loop.
6.1 Default core policy
Arachne currently includes one core policy; we used the
default policy for all of the performance measurements in
Section 7. The default policy supports two thread classes:
exclusive and normal. Each exclusive thread runs on a sep-
arate core reserved for that particular thread; when an ex-
clusive thread is blocked, its core is idle. Exclusive threads
are useful for long-running dispatch threads that poll. Nor-
mal threads share a pool of cores that is disjoint from the
cores used for exclusive threads; there can be multiple nor-
mal threads assigned to a core at the same time.
6.2 Core estimation
The default core policy requests one core for each ex-
clusive thread, plus additional cores for normal threads.
Estimating the cores required for the normal threads re-
quires making a tradeoff between core utilization and fast
response time. If we attempt to keep cores busy 100%
of the time, fluctuations in load will create a backlog of
pending threads, resulting in delays for new threads. On
the other hand, we could optimize for fast response time,
but this would result in low utilization of cores. The more
bursty a workload, the more resources it must waste in
order to get fast response.

The default policy uses different mechanisms for scal-
ing up and scaling down. The decision to scale up is based

CloudLab m510[36]

CPU Xeon D-1548 (8 x 2.0 GHz cores)
RAM 64 GB DDR4-2133 at 2400 MHz
Disk Toshiba THNSN5256GPU7 (256 GB)
NIC Dual-port Mellanox ConnectX-3 10 Gb
Switches HPE Moonshot-45XGc

Table 1: Hardware configuration used for benchmarking.
All nodes ran Linux 4.4.0. C-States were enabled and
Meltdown mitigations were disabled. Hyperthreads were
enabled (2 hyperthreads per core). Machines were not
configured to perform packet steering such as RSS or XPS.

on load factor: when the average load factor across all
cores running normal threads reaches a threshold value,
the core policy increases its requested number of cores by
1. We chose this approach because load factor is a fairly
intuitive proxy for response time; this makes it easier for
users to specify a non-default value if needed. In addition,
performance measurements showed that load factor works
better than utilization for scaling up: a single load factor
threshold works for a variety of workloads, whereas the
best utilization for scaling up depends on the burstiness
and overall volume of the workload.

On the other hand, scaling down is based on utiliza-
tion. Load factor is hard to use for scaling down because
the metric of interest is not the current load factor, but
rather the load factor that will occur with one fewer core;
this is hard to estimate. Instead, the default core policy
records the total utilization (sum of the utilizations of all
cores running normal threads) each time it increases its
requested number of cores. When the utilization returns
to a level slightly less than this, the runtime reduces its
requested number of cores by 1 (the “slightly less” fac-
tor provides hysteresis to prevent oscillations). A separate
scale-down utilization is recorded for each distinct number
of requested cores.

Overall, three parameters control the core estimation
mechanism: the load factor for scaling up, the interval
over which statistics are averaged for core estimation, and
the hysteresis factor for scaling down. The default core
policy currently uses a load factor threshold of 1.5, an av-
eraging interval of 50 ms, and a hysteresis factor of 9%
utilization.

7 Evaluation
We implemented Arachne in C++ on Linux; source code is
available on GitHub [33]. The core arbiter contains 4500
lines of code, the runtime contains 3400 lines, and the de-
fault core policy contains 270 lines.

Our evaluation of Arachne addresses the following
questions:
• How efficient are the Arachne threading primitives,

and how does Arachne compare to other threading sys-
tems?

• Does Arachne’s core-aware approach to threading pro-
duce significant benefits for low-latency applications?

152    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Benchmark Arachne Arachne RQ std::thread Go uThreads
No HT HT No HT HT

Thread Creation 275 ns 320 ns 524 ns 520 ns 13329 ns 444 ns 6132 ns
One-Way Yield 83 ns 149 ns 137 ns 199 ns N/A N/A 79 ns
Null Yield 14 ns 23 ns 13 ns 24 ns N/A N/A 6 ns
Condition Notify 251 ns 272 ns 459 ns 471 ns 4962 ns 483 ns 4976 ns
Signal 233 ns 254 ns N/A N/A N/A N/A N/A
Thread Exit Turnaround 328 ns 449 ns 408 ns 484 ns N/A N/A N/A

Table 2: Median cost of scheduling primitives. Creation, notification, and signaling are measured end-to-end, from initiation
in one thread until the target thread wakes up and begins execution on a different core. Arachne creates all threads on a different
core from the parent. Go always creates Goroutines on the parent’s core. uThreads uses a round-robin approach to assign
threads to cores; when it chooses the parent’s core, the median cost drops to 250 ns. In “One-Way Yield”, control passes from
the yielding thread to another runnable thread on the same core. In “Null Yield”, there are no other runnable threads, so control
returns immediately to the yielding thread. “Thread Exit Turnaround” measures the time from the last instruction of one thread
to the first instruction of the next thread to run on a core. N/A indicates that the threading system does not expose the measured
primitive. “Arachne RQ” means that Arachne was modified to use a ready queue instead of the queueless dispatch mechanism
described in Section 5.3. “No HT” means that each thread ran on a separate core using one hyperthread; the other hyperthread
of each core was inactive. “HT” means the other hyperthread of each core was active, running the Arachne dispatcher.

• How do Arachne’s internal mechanisms, such as
its queue-less approach to thread scheduling and its
mechanisms for core estimation and core allocation,
contribute to performance?

Table 1 describes the configuration of the machines used
for benchmarking.
7.1 Threading Primitives
Table 2 compares the cost of basic thread opera-
tions in Arachne with C++ std::thread, Go, and
uThreads [4]. std::thread is based on kernel threads;
Go implements threads at user level in the language run-
time; and uThreads uses kernel threads to multiplex user
threads, like Arachne. uThreads is a highly rated C++ user
threading library on GitHub and claims high performance.
The measurements use microbenchmarks, so they repre-
sent best-case performance.

Arachne’s thread operations are considerably faster
than any of the other systems, except that yields are faster
in uThreads. Arachne’s cache-optimized design performs
thread creation twice as fast as Go, even though Arachne
places new threads on a different core from the parent
while Go creates new threads on the parent’s core.

To evaluate Arachne’s queueless approach, we modi-
fied Arachne to use a wait-free multiple-producer-single-
consumer queue [7] on each core to identify runnable
threads instead of scanning over all contexts. We se-
lected this implementation for its speed and simplicity
from several candidates on GitHub. Table 2 shows that
the queueless approach is 28–40% faster than one using a
ready queue (we counted three additional cache misses for
thread creation in the ready queue variant of Arachne).

We designed Arachne’s thread creation mechanism not
just to minimize latency, but also to provide high through-
put. We ran two experiments to measure thread creation
throughput. In the first experiment (Figure 2(a)), a sin-
gle “dispatch” thread creates new threads as quickly as

0 2 4 6 8 10 12 14

Number of Cores

0

1

2

3

4

5

6

T
h
re

a
d
 C

o
m

p
le

ti
o
n
s

(M
/s

e
c
)

(a)

0 2 4 6 8 10 12 14

Number of Cores

0

5

10

15

20

25

30

35

40

T
h
re

a
d
 C

o
m

p
le

ti
o
n
s

(M
/s

e
c
)

Go

Arachne

Arachne-RQ

uThread

std::thread

(b)

Figure 2: Thread creation throughput as a function of
available cores. In (a) a single thread creates new threads as
quickly as possible; each child consumes 1 µs of execution
time and then exits. In (b) 3 initial threads are created for
each core; each thread creates one child and then exits.

possible (this situation might occur, for example, if a sin-
gle thread is polling a network interface for incoming re-
quests). A single Arachne thread can spawn more than
5 million new threads per second, which is 2.5x the rate
of Go and at least 10x the rate of std::thread or
uThreads. This experiment demonstrates the benefits of
performing load balancing at thread creation time. Go’s

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    153



Experiment Program Keys Values Items PUTs Clients Threads Conns Pipeline IR Dist

Realistic Mutilate [27] ETC ETC 1M .03 20+1 16+8 1280+8 1+1 GPareto
Colocation Memtier [24] 30B 200B 8M 0 1+1 16+8 320+8 10+1 Poisson
Skew Memtier 30B 200B 8M 0 1 16 512 100 Poisson

Table 3: Configurations of memcached experiments. Program is the benchmark program used to generate the workload (our
version of Memtier is modified from the original). Keys and Values give sizes of keys and values in the dataset (ETC recreates
the Facebook ETC workload [3], which models actual usage of memcached). Items is the total number of objects in the dataset.
PUTs is the fraction of all requests that were PUTs (the others were GETs). Clients is the total number of clients (20+1 means
20 clients generated an intensive workload, and 1 additional client measured latency using a lighter workload). Threads is the
number of threads per client. Conns is the total number of connections per client. Pipeline is the maximum number of outstanding
requests allowed per connection before shedding workload. IR Dist is the inter-request time distribution. Unless otherwise
indicated, memcached was configured with 16 worker threads and memcached-A scaled automatically between 2 and 15 cores.

101

102

103

104

L
a
te

n
c
y
 (

u
s
)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Throughput (MOps/Sec)

101

102

103

104

L
a
te

n
c
y
 (

u
s
)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Throughput (MOps/Sec)

(a) memcached: 16 worker threads, 16 cores

101

102

103

104

L
a
te

n
c
y
 (

u
s
)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Throughput (MOps/Sec)

101

102

103

104

L
a
te

n
c
y
 (

u
s
)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Throughput (MOps/Sec)

(b) memcached: 16 workers; both: 8 cores

Memcached (99%)

Memcached-A (99%)

Memcached (50%)

Memcached-A (50%)

Figure 3: Median and 99th-percentile request latency as a function of achieved throughput for both memcached and memcached-
A, under the Realistic benchmark. Each measurement ran for 30 seconds after a 5-second warmup. Y-axes use a log scale.

work stealing approach creates significant additional over-
head, especially when threads are short-lived, and the par-
ent’s work queue can become a bottleneck. At low core
counts, Go exhibits higher throughput than Arachne be-
cause it runs threads on the creator’s core in addition to
other available cores, while Arachne only uses the cre-
ator’s core for dispatching.

The second experiment measures thread creation
throughput using a distributed approach, where each of
many existing threads creates one child thread and then
exits (Figure 2(b)). In this experiment both Arachne and
Go scaled in their throughput as the number of available
cores increased. Neither uThreads nor std::thread
had scalable throughput; uThreads had 10x less through-
put than Arachne or Go andstd::threadhad 100x less
throughput. Go’s approach to thread creation worked well
in this experiment; each core created and executed threads
locally and there was no need for work stealing since the
load naturally balanced itself. As a result, Go’s throughput
was 1.5–2.5x that of Arachne. Arachne’s performance re-
flects the costs of thread creation and exit turnaround from
Table 2, as well as occasional conflicts between concurrent
thread creations.

Figure 2 also includes measurements of the ready queue
variant of Arachne. Arachne’s queueless approach pro-
vided higher throughput than the ready queue variant for
both experiments.

7.2 Arachne’s benefits for memcached
We modified memcached [23] version 1.5.6 to use
Arachne; the source is available on GitHub [19]. In the

modified version (“memcached-A”), the pool of worker
threads is replaced by a single dispatch thread, which waits
for incoming requests on all connections. When a request
arrives, the dispatch thread creates a new Arachne thread,
which lives only long enough to handle all available re-
quests on the connection. Memcached-A uses the default
core policy; the dispatch thread is “exclusive” and workers
are “normal” threads.

Memcached-A provides two benefits over the original
memcached. First, it reduces performance interference,
both between kernel threads (there is no multiplexing)
and between applications (cores are dedicated to applica-
tions). Second, memcached-A provides finer-grain load-
balancing (at the level of individual requests rather than
connections).

We performed three experiments with memcached;
their configurations are summarized in Table 3. The
first experiment, Realistic, measures latency as a func-
tion of load under realistic conditions; it uses the Muti-
late benchmark [17, 27] to recreate the Facebook ETC
workload [3]. Figure 3(a) shows the results. The max-
imum throughput of memcached is 20% higher than
memcached-A. This is because memcached-A uses two
fewer cores (one core is reserved for unmanaged threads
and one for the dispatcher); in addition, memcached-
A incurs overhead to spawn a thread for each request.
However, memcached-A has significantly lower latency
than memcached. Thus, if an application has service-
level requirements, memcached-A provides higher use-
able throughput. For example, if an application requires

154    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



a median latency less than 100 µs, memcached-A can
support 37.5% higher throughput than memcached (1.1
Mops/sec vs. 800 Kops/sec). At the 99th percentile,
memcached-A’s latency ranges from 3–40x lower than
memcached. We found that Linux migrates memcached
threads between cores frequently: at high load, each thread
migrates about 10 times per second; at low load, threads
migrate about every third request. Migration adds over-
head and increases the likelihood of multiplexing.

One of our goals for Arachne is to adapt automatically to
application load and the number of available cores, so ad-
ministrators do not need to specify configuration options
or reserve cores. Figure 3(b) shows memcached’s behav-
ior when it is given fewer cores than it would like. For
memcached, the 16 worker threads were multiplexed on
only 8 cores; memcached-A was limited to at most 8 cores.
Maximum throughput dropped for both systems, as ex-
pected. Arachne continued to operate efficiently: latency
was about the same as in Figure 3(a). In contrast, mem-
cached experienced significant increases in both median
and tail latency, presumably due to additional multiplex-
ing; with a median latency limit of 100 µs, memcached
could only handle 300 Kops/sec, whereas memcached-A
handled 780 Kops/sec.

The second experiment, Colocation, varied the load dy-
namically to evaluate Arachne’s core estimator. It also
measured memcached and memcached-A performance
when colocated with a compute-intensive application (the
x264 video encoder [25]). The results are in Figure 4. Fig-
ure 4(a) shows that memcached-A used only 2 cores at
low load (dispatch and one worker) and ramped up to use
all available cores as the load increased. Memcached-A
maintained near-constant median and tail latency as the
load increased, which indicates that the core estimator
chose good points at which to change its core requests.
Memcached’s latency was higher than memcached-A and
it varied more with load; even when running without the
background application, 99th-percentile latency was 10x
higher for memcached than for memcached-A. Tail la-
tency for memcached-A was actually better at high load
than low load, since there were more cores available to
absorb bursts of requests.

When a background video application was colocated
with memcached, memcached’s latency doubled, both at
the median and at the 99th percentile, even though the
background application ran at lower priority. In con-
trast, memcached-A was almost completely unaffected
by the video application. This indicates that Arachne’s
core-aware approach improves performance isolation be-
tween applications. Figure 4(a) shows that memcached-A
ramped up its core usage more quickly when colocated
with the video application. This suggests that there was
some performance interference from the video applica-
tion, but that the core estimator detected this and allocated

0 20 40 60 80 100 120 140 160

Time (Seconds)

0

8

16

C
o
re

s

(a)

)

0 20 40 60 80 100 120 140 160

Time (Seconds)

0

4

8

9
9
%

 L
a
te

n
c
y
 (

m
s
) Memcached-A alone

Memcached-A w/ x264

Memcached alone

Memcached w/ x264

Time (Seconds)

(b)

0.0

0.5

1.0

T
h
ro

u
g
h
p
u
t 

(M
O

p
s
/S

e
c
)

0 20 40 60 80 100 120 140 160

Time (Seconds)

0

50

100

5
0

%
 L

a
te

n
c
y
 (

u
s
)

Throughput

Time (Seconds)

(c)
Time (Seconds)

0 20 40 60 80 100 120 140 160

Time (Seconds)

0

80

160

F
ra

m
e
s
/s

e
c

x264 Alone

x264 w/ Memcached-A

x264 w/ Memcached

(d)

Figure 4: Memcached performance in the Colocation
experiment. The request rate increased gradually from
10 Kops/sec to 1 Mops/sec and then decreased back to 10
Kops/sec. In some experiments the x264 video encoder [25]
ran concurrently, using a raw video file (sintel-1280.y4m)
from Xiph.org [21]. When memcached-A ran with x264,
the core arbiter gave memcached-A as many cores as it
requested; x264 was not managed by Arachne, so Linux
scheduled it on the cores not used by memcached-A. When
memcached ran with x264, the Linux scheduler determined
how many cores each application received. x264 sets a
“nice” value of 10 for itself by default; we did not change
this behavior in these experiments. (a) shows the number of
cores allocated to memcached-A; (b) shows 99th percentile
tail latency for memcached and memcached-A; (c) shows
median latency, plus the rate of requests; (d) shows the
throughput of the video decoder (averaged over trailing
4 seconds) when running by itself or with memcached or
memcached-A.

cores more aggressively to compensate.
Figure 4(d) shows the throughput of the video applica-

tion. At high load, its throughput when colocated with
memcached-A was less than half its throughput when
colocated with memcached. This is because memcached-
A confined the video application to a single unmanaged
core. With memcached, Linux allowed the video appli-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    155



Time (Seconds)

0 20 40 60 80 100 120 140 160

Time (Seconds)

0

5

10

15
9

9
%

 L
a
te

n
c
y
 (

m
s
) Memcached-A alone

Memcached-A w/ x264

NoArbiter alone

NoArbiter w/ x264

Time (Seconds)

0 20 40 60 80 100 120 140 160

Time (Seconds)

0

60

120

5
0

%
 L

a
te

n
c
y
 (

u
s
)

Figure 5: Median and tail latency in the Colocation
experiment with the core arbiter (“Memcached-A”, same as
Figure 4) and without the core arbiter (“NoArbiter”).

cation to consume more resources, which degraded the
performance of memcached.

Figure 5 shows that dedicated cores are fundamental
to Arachne’s performance. For this figure, we ran the
Colocation experiment using a variant of memcached-A
that did not have dedicated cores: instead of using the
core arbiter, Arachne scaled by blocking and unblock-
ing kernel threads on semaphores, and the Linux ker-
nel scheduled the unblocked threads. As shown in Fig-
ure 5, this resulted in significantly higher latency both
with and without the background application. Additional
measurements showed that latency spikes occurred when
Linux descheduled a kernel thread but Arachne contin-
ued to assign new user threads to that kernel thread; dur-
ing bursts of high load, numerous user threads could be
stranded on a descheduled kernel thread for many mil-
liseconds. Without the dedicated cores provided by the
core arbiter, memcached-A performed significantly worse
than unmodified memcached.

Figures 4 and 5 used the default configuration of the
background video application, in which it lowered its ex-
ecution priority to “nice” level 10. We also ran the exper-
iments with the video application running at normal pri-
ority; median and tail latencies for memcached increased
by about 2x, while those for memcached-A were almost
completely unaffected. We omit the details, due to space
limitations.

The final experiment for memcached is Skew, shown
in Figure 6. This experiment evaluates memcached per-
formance when the load is not balanced uniformly across
client connections. Since memcached statically parititions
client connections among worker threads, hotspots can
develop, where some workers are overloaded while oth-
ers are idle; this can result in poor overall throughput. In
contrast, memcached-A performs load-balancing on each
request, so performance is not impacted by the distribution

0.0

0.5

1.0

1.5

T
h
ro

u
g
h
p
u
t 

(M
O

p
s
/S

e
c
)

0 20 40 60 80 100 120 140 160
Time (Seconds)

0.0

0.5

1.0

1.5

T
h
ro

u
g
h
p
u
t 

(M
O

p
s
/S

e
c
)

0 20 40 60 80 100 120 140 160
Time (Seconds)

Memcached-A

Memcached

Memcached Hot Worker

0.0

0.5

1.0

F
ra

c
. 
L
o
a
d

0.0

0.5

1.0

F
ra

c
. 
L
o
a
d

0.0625

Hot Worker

Average Worker

Figure 6: The impact of workload skew on memcached
performance with a target load of 1.5 Mops/sec. Initially,
the load was evenly distributed over 512 connections (each
memcached worker handled 512/16 = 32 connections); over
time, an increasing fraction of total load was directed to
one specific “hot” worker thread by increasing the request
rate on the hot worker’s connections and decreasing the
request rate on all other connections. The bottom graph
shows the overall throughput, as well as the throughput of
the overloaded worker thread in memcached.

0 10 20 30

Number of Clients

0

50

100

150

200

250

300

350

W
ri

te
 T

h
ro

u
g
h
p
u
t 

(k
o
p
s
/s

)

RAMCloud

RAMCloud with Arachne

Figure 7: Throughput of a single RAMCloud server when
many clients perform continuous back-to-back write RPCs
of 100-byte objects. Throughput is measured as the number
of completed writes per second.

of load across client connections.

7.3 Arachne’s Benefits for RAMCloud
We also modified RAMCloud [30] to use Arachne. In
the modified version (“RAMCloud-A”), the long-running
pool of worker threads is eliminated, and the dispatch
thread creates a new worker thread for each request.
Threads that are busy-waiting on nested RPCs yield af-
ter each iteration of their polling loop. This allows other
requests to be processed during the waiting time, so that
the core isn’t wasted. Figure 7 shows that RAMCloud-A
has 2.5x higher write throughput than RAMCloud. On the
YCSB benchmark [9] (Figure 8), RAMCloud-A provided
54% higher throughput than RAMCloud for the write-
heavy YCSB-A workload. On the read-only YCSB-C
workload, RAMCloud-A’s throughput was 15% less than
RAMCloud, due to the overhead of Arachne’s thread in-
vocation and thread exit. These experiments demonstrate

156    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A B C D F

YCSB Workload

0

2

4

6

8

10

12

A
g
g
re

g
a
te

 M
o
p
s
/s

e
c

RAMCloud

RAMCloud-A

Figure 8: Comparison between RAMCloud and
RAMCloud-A on a modified YCSB benchmark [9]
using 100-byte objects. Both were run with 12 storage
servers. Y-values represent aggregate throughput across 30
independent client machines, each running with 8 threads.

0 10 20 30 40 50

Number of Occupied Thread Contexts

0

100

200

300

400

500

L
a
te

n
c
y
 (

n
s
)

Latency (50%)

Latency (99%)

Figure 9: Cost of signaling a blocked thread as the number
of threads on the target core increases. Latency is measured
from immediately before signaling on one core until the
target thread resumes execution on a different core.

that Arachne makes it practical to schedule other work
during blockages as short as a few microseconds.

7.4 Arachne Internal Mechanisms
This section evaluates several of the internal mechanisms
that are key to Arachne’s performance. As mentioned
in Section 5.3, Arachne forgoes the use of ready queues
as part of its cache-optimized design; instead, the dis-
patcher scans the wakeupTime variables for occupied
thread contexts until it finds a runnable thread. Conse-
quently, as a core fills with threads, its dispatcher must
iterate over more and more contexts. To evaluate the cost
of scanning these flags, we measured the cost of signal-
ing a particular blocked thread while varying the number
of additional blocked threads on the target core; Figure 9
shows the results. Even in the worst case where all 56
thread contexts are occupied, the average cost of waking
up a thread increased by less than 100 ns, which is equiv-
alent to about one cache coherency miss. This means that
an alternative implementation that avoids scanning all the
active contexts must do so without introducing any new
cache misses; otherwise its performance will be worse
than Arachne. Arachne’s worst-case performance in Fig-
ure 9 is still better than the ready queue variant of Arachne
in Table 2.

10 20 30 40 50 60 70

Microseconds

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

Reclaimed

Idle

Figure 10: Cumulative distribution of latency from core
request to core acquisition (a) when the core arbiter has a
free core available and (b) when it must reclaim a core from
a competing application.

Figures 10 and 11 show the performance of Arachne’s
core allocation mechanism. Figure 10 shows the distri-
bution of allocation times, measured from when a thread
callssetRequestedCores until a kernel thread wakes
up on the newly-allocated core. In the first scenario, there
is an idle core available to the core arbiter, and the cost
is merely that of moving a kernel thread to the core and
unblocking it. In the second scenario, a core must be
reclaimed from a lower priority application so the cost
includes signaling another process and waiting for it to
release a core. Figure 10 shows that Arachne can real-
locate cores in about 30 µs, even if the core must be re-
claimed from another application. This makes it practical
for Arachne to adapt to changes in load at the granularity
of milliseconds.

Figure 11 shows the timing of each step of a core request
that requires the preemption of another process’s core.
About 80% of the time is spent in socket communication.

8 Related Work
Numerous user-level threading packages have been de-
veloped over the last several decades. We have already
compared Arachne with Go [14] and uThreads [4]. Boost
fibers [1], Folly [13], and Seastar [37] implement user-
level threads but do not multiplex user threads across mul-
tiple cores. Capriccio [39] solved the problem of blocking
system calls by replacing them with asynchronous sys-
tem calls, but it does not scale to multiple cores. Cilk [8]
is a compiler and runtime for scheduling tasks over ker-
nel threads, but does not handle blocking and is not core-
aware. Carbon [16] proposes the use of hardware queues
to dispatch hundred-instruction-granularity tasks, but it
requires changes to hardware and is limited to a fork-join
model of parallelism. Wikipedia [40] lists 21 C++ thread-
ing libraries as of this writing. Of these, 10 offer only
kernel threads, 3 offer compiler-based automatic paral-
lelization, 3 are commercial packages without any pub-
lished performance numbers, and 5 appear to be defunct.
None of the systems listed above supports load balancing
at thread creation time, the ability to compute core require-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    157



Idle kernel 

   thread

   Requesting

  kernel thread

Acquiescing

kernel thread

Core Arbiter

Recompute core allocations: 2.7 s

Sleep in blockUntilCoreAvailable

Time to wake up on core: 29 s

Notify arbiter of new core requirements (socket): 6.6 s

Prepare to release core: 0.4 s Sleep in blockUntilCoreAvailable

Tell arbiter this thread is blocking (socket): 6.5 s

Request release  

(shared memory):

0.5 s

Recompute core 

allocations: 1.9 s Wake up blocked thread (socket): 7.9 s

Change blocked thread’s cpuset: 2.6 s

setRequestedCores

Figure 11: Timeline of a core request to the core arbiter. There are two applications. Both applications begin with a single
dedicated core, and the top application also begins with a thread waiting to be placed on a core. The top application has higher
priority than the bottom application, so when the top application requests an additional core the bottom application is asked to
release its core.

ments and conform to core allocations, or a mechanism for
implementing application-specific core policies.

Scheduler activations [2] are similar to Arachne in that
they allocate processors to applications to implement user-
level threads efficiently. A major focus of the scheduler
activations work was allowing processor preemption dur-
ing blocking kernel calls; this resulted in significant kernel
modifications. Arachne focuses on other issues, such as
minimizing cache misses, estimating core requirements,
and enabling application-specific core policies.

Akaros [35] and Parlib [15] follow in the tradition of
scheduler activations. Akaros is an operating system that
allocates dedicated cores to applications and makes all
blocking system calls asynchronous; Parlib is a framework
for building user schedulers on dedicated cores. Akaros
offers functionality analogous to the Arachne core arbiter,
but it does not appear to have reached a level of maturity
that can support meaningful performance measurements.

The core arbiter’s controlling of process scheduling pol-
icy in userspace while leaving mechanism to the kernel
resembles policy modules in Hydra [18].

The traditional approach for managing multi-threaded
applications on multi-core machines has been gang
scheduling [12, 29]. In gang scheduling, each application
unilaterally determines its threading requirements; the op-
erating system then attempts to schedule all of an applica-
tion’s threads simultaneously on different cores. Tucker
and Gupta pointed out that gang scheduling results in in-
efficient multiplexing when the system is overloaded [38].
They argued that it is more efficient to divide the cores
so that each application has exclusive use of a few cores;
an application can then adjust its degree of parallelism to
match the available cores. Arachne implements this ap-
proach.

Event-based applications such as Redis [34] and ng-
inx [28] represent an alternative to user threads for
achieving high throughput and low latency. Behren et
al. [39] argued that event-based approaches are a form of
application-specific optimization and such optimization is
due to the lack of efficient thread runtimes; Arachne of-
fers efficient threading as a more convenient alternative to

events.
Several recent systems, such as IX [6] and Zygos [32],

have combined thread schedulers with high-performance
network stacks. These systems share Arachne’s goal of
combining low latency with efficient resource usage, but
they take a more special-purpose approach than Arachne
by coupling the threading mechanism to the network stack.
Arachne is a general-purpose mechanism; it can be used
with high-performance network stacks, such as in RAM-
Cloud, but also in other situations.

9 Future Work
We believe that Arachne’s core-aware approach to
scheduling would be beneficial in other domains. For
example, virtual machines could use a multi-level core-
aware approach, where applications use Arachne to nego-
tiate with their guest OS over cores, and the guest OSes use
a similar approach to negotiate with the hypervisor. This
would provide a more flexible and efficient way of man-
aging cores than today’s approaches, since the hypervisor
would know how many cores each virtual machine needs.

Core-aware scheduling would also be beneficial in clus-
ter schedulers for datacenter-scale applications. The clus-
ter scheduler could collect information about core require-
ments from the core arbiters on each of the cluster ma-
chines and use this information to place applications and
move services among machines. This would allow deci-
sions to be made based on actual core needs rather than
statically declared maximum requirements. Arachne’s
performance isolation would allow cluster schedulers to
run background applications more aggressively without
fear of impacting the response time of foreground applica-
tions.

There are a few aspects of Arachne that we have not
fully explored. We have only preliminary experience im-
plementing core policies, and our current core policies do
not address issues related to NUMA machines, such as
how to allocate cores in an application that spans multiple
sockets. We hope that a variety of reusable core policies
will be created, so that application developers can achieve
high threading performance without having to write a cus-

158    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



tom policy for each application. In addition, our experi-
ence with the parameters for core estimation is limited.
We chose the current values based on a few experiments
with our benchmark applications. The current parameters
provide a good trade-off between latency and utilization
for our benchmarks, but we don’t know whether these will
be the best values for all applications.

10 Conclusion
One of the most fundamental principles in operating sys-
tems is virtualization, in which the system uses a set of
physical resources to implement a larger and more diverse
set of virtual entities. However, virtualization only works
if there is a balance between the use of virtual objects and
the available physical resources. For example, if the usage
of virtual memory exceeds available physical memory, the
system will collapse under page thrashing.

Arachne provides a mechanism to balance the usage of
virtual threads against the availability of physical cores.
Each application computes its core requirements dynam-
ically and conveys that to a central core arbiter, which
then allocates cores among competing applications. The
core arbiter dedicates cores to applications and tells each
application which cores it has received. The applica-
tion can then use that information to manage its threads.
Arachne also provides an exceptionally fast implementa-
tion of threads at user level, which makes it practical to use
threads even for very short-lived tasks. Overall, Arachne’s
core-aware approach to thread management enables gran-
ular applications that combine both low latency and high
throughput.

11 Acknowledgements
We would like to thank our shepherd, Michael Swift, and
the anonymous reviewers for helping us improve this pa-
per. Thanks to Collin Lee for giving feedback on design,
and to Yilong Li for help with debugging the RAMCloud
networking stack. This work was supported by C-FAR
(one of six centers of STARnet, a Semiconductor Re-
search Corporation program, sponsored by MARCO and
DARPA) and by the industrial affiliates of the Stanford
Platform Lab.

References
[1] Boost fibers. http://www.boost.org/doc/

libs/1_64_0/libs/fiber/doc/html/
fiber/overview.html.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska,
and H. M. Levy. Scheduler activations: Effective
kernel support for the user-level management of
parallelism. ACM Transactions on Computer
Systems (TOCS), 10(1):53–79, 1992.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale

key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint Interna-
tional Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, pages
53–64, 2012.

[4] S. Barghi. uthreads: Concurrent user threads in c++.
https://github.com/samanbarghi/
uThreads.

[5] L. Barroso, M. Marty, D. Patterson, and P. Ran-
ganathan. Attack of the Killer Microseconds. Com-
munications of the ACM, 60(4):48–54, Mar. 2017.

[6] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput
and Low Latency. In 11th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 14), pages 49–65, Oct. 2014.

[7] D. Bittman. Mpscq - multiple producer, single
consumer wait-free queue. https://github.
com/dbittman/waitfree-mpsc-queue.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. In Pro-
ceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
PPOPP ’95, pages 207–216, 1995.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-
nan, and R. Sears. Benchmarking cloud serving sys-
tems with ycsb. In Proceedings of the 1st ACM sym-
posium on Cloud computing, pages 143–154, 2010.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communica-
tions of the ACM, 51:107–113, January 2008.

[11] A. Dragojević, D. Narayanan, M. Castro, and
O. Hodson. FaRM: Fast Remote Memory. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 401–414,
2014.

[12] D. G. Feitelson and L. Rudolph. Gang scheduling
performance benefits for fine-grain synchronization.
Journal of Parallel and Distributed Computing,
16(4):306–318, 1992.

[13] Folly: Facebook open-source library.
https://github.com/facebook/folly.

[14] The Go Programming Language. https:
//golang.org/.

[15] K. A. Klues. OS and Runtime Support for Efficiently
Managing Cores in Parallel Applications. PhD
thesis, University of California, Berkeley, 2015.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    159



[16] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon:
Architectural support for fine-grained parallelism
on chip multiprocessors. In Proceedings of the
34th Annual International Symposium on Computer
Architecture, ISCA ’07, pages 162–173, 2007.

[17] J. Leverich and C. Kozyrakis. Reconciling High
Server Utilization and Sub-millisecond Quality-of-
Service. In Proc. Ninth European Conference on
Computer Systems, EuroSys ’14, pages 4:1–4:14,
2014.

[18] R. Levin, E. Cohen, W. Corwin, F. Pollack, and
W. Wulf. Policy/mechanism separation in hydra. In
ACM SIGOPS Operating Systems Review, volume 9,
pages 132–140. ACM, 1975.

[19] Q. Li. memcached-a. https://github.com/
PlatformLab/memcached-A.

[20] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-Memory
Key-Value Storage. In Proc. 11th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 14), pages 429–444, Apr. 2014.

[21] M. Lora. Xiph.org::test media. https:
//media.xiph.org/.

[22] A. Lottarini, A. Ramirez, J. Coburn, M. A. Kim,
P. Ranganathan, D. Stodolsky, and M. Wachsler.
vbench: Benchmarking video transcoding in the
cloud. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 797–809, 2018.

[23] memcached: a Distributed Memory Object Caching
System. http://www.memcached.org/.

[24] Memtier benchmark. https://github.com/
RedisLabs/memtier_benchmark.

[25] L. Merritt and R. Vanam. x264: A
high performance H.264/AVC encoder.
http://neuron2.net/library/avc/
overview_x264_v8_5.pdf.

[26] M. Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. IEEE Transactions
on Parallel and Distributed Systems, 12(10):1094–
1104, 2001.

[27] Mutilate: high-performance memcached load gen-
erator. https://github.com/leverich/
mutilate.

[28] Nginx. https://nginx.org/en/.

[29] J. Ousterhout. Scheduling Techniques for Concur-
rent Systems. In Proc. 3rd International Conference

on Distributed Computing Systems, pages 22–30,
1982.

[30] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, et al. The RAMCloud Storage
System. ACM Transactions on Computer Systems
(TOCS), 33(3):7, 2015.

[31] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control Plane.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 1–16,
2014.

[32] G. Prekas, M. Kogias, and E. Bugnion. ZygOS:
Achieving Low Tail Latency for Microsecond-scale
Networked Tasks. In Proc. of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages
325–341, 2017.

[33] H. Qin. Arachne. https://github.com/
PlatformLab/Arachne.

[34] Redis. http://redis.io.

[35] B. Rhoden, K. Klues, D. Zhu, and E. Brewer.
Improving per-node efficiency in the datacenter with
new os abstractions. In Proceedings of the 2Nd ACM
Symposium on Cloud Computing, SOCC ’11, pages
25:1–25:8, 2011.

[36] R. Ricci, E. Eide, and The CloudLab Team. In-
troducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications.
USENIX ;login:, 39(6), December 2014.

[37] Seastar. http://www.seastar-project.
org/.

[38] A. Tucker and A. Gupta. Process Control and
Scheduling Issues for Multiprogrammed Shared-
memory Multiprocessors. In Proc. of the Twelfth
ACM Symposium on Operating Systems Principles,
SOSP ’89, pages 159–166, 1989.

[39] R. Von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: scalable threads for internet
services. In ACM SIGOPS Operating Systems
Review, volume 37, pages 268–281, 2003.

[40] Wikipedia. List of c++ multi-threading libraries —
wikipedia, the free encyclopedia, 2017.

160    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association


