
A Demonstration of Willump: A Statistically-Aware
End-to-end Optimizer for Machine Learning Inference

Peter Kraft, Daniel Kang, Deepak Narayanan,
Shoumik Palkar, Peter Bailis, Matei Zaharia

Stanford DAWN Project

{kraftp, ddkang, deepakn, shoumik, pbailis, matei}@cs.stanford.edu

ABSTRACT
Systems for ML inference are widely deployed today, but they
typically optimize ML inference workloads using techniques
designed for conventional data serving workloads and miss
critical opportunities to leverage the statistical nature of ML.
In this demo, we present Willump, an optimizer for ML in-
ference that introduces statistically-motivated optimizations
targeting ML applications whose performance bottleneck is
feature computation. Willump automatically cascades feature
computation for classification queries: Willump classifies most
data inputs using only high-value, low-cost features selected
by a cost model, improving query performance by up to 5×
without statistically significant accuracy loss. In this demo,
we use interactive and easily-downloadable Jupyter notebooks
to show VLDB attendees which applications Willump can
speed up, how to use Willump, and how Willump produces
such large performance gains.

PVLDB Reference Format:
Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar,
Peter Bailis, Matei Zaharia. A Demonstration of Willump: A
Statistically-Aware End-to-end Optimizer for Machine Learning
Inference. PVLDB, 13(12): 2833-2836, 2020.
DOI: https://doi.org/10.14778/3415478.3415487

1. INTRODUCTION
The importance of machine learning in modern data centers

has sparked interest in model serving systems, which perform
ML inference and serve predictions to users [2]. However, these
model serving systems typically approach ML inference as
an extension of conventional data serving workloads, missing
critical opportunities to exploit its statistical nature. Most
modern model serving systems, such as Clipper [2], Amazon
Sagemaker, and Microsoft AzureML, treat ML inference as a
black box and implement generic systems optimizations such
as caching and adaptive batching. Some systems, such as
Pretzel [5], also apply traditional compiler optimizations such
as loop fusion.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415487

These optimizations are useful for ML inference applications,
just as they are for web applications or database queries. How-
ever, unlike other serving workloads, ML inference workloads
have unique statistical properties that these optimizations do
not leverage. One such property is that ML models can often
be approximated efficiently on many inputs. For example, the
computer vision community has long used “model cascades”
where a low-cost model classifies “easy” inputs and a higher-
cost model classifies inputs where the first is uncertain, result-
ing in faster inference with negligible change in accuracy [7].

In recent work, we have developed a system to leverage this
opportunity for optimization: Willump, a statistically-aware
end-to-end optimizer for ML inference [4]. Willump targets
a common class of ML inference applications: those whose
performance bottleneck is feature computation. In these appli-
cations, a pipeline of transformations converts raw input data
into numerical features that are then used by an ML model to
make predictions. These applications are common, especially
when performing ML inference over tabular data. For exam-
ple, a recent study of ML inference at Microsoft found that
feature computation accounted for over 99% of the runtime
of some production ML inference applications [5]. Willump
improves ML inference performance through an automatic
approximation algorithm we call end-to-end cascades.

The key observation underlying end-to-end cascades is that
ML inference pipelines often compute many features for use in
a model, but can classify some data inputs using only a subset
of these features. For example, a pipeline that detects toxic
online comments may need to compute expensive TF-IDF
vectorizations to classify some comments, but can classify
others simply by checking for curse words.

Selectively computing features is challenging because fea-
tures vary by orders of magnitude in computational cost and
importance to the model and are often computationally depen-
dent on one another. Therefore, one cannot pick an arbitrary
set of features (e.g,. the least computationally intensive) and
expect to efficiently classify data inputs with them.

To address these challenges, Willump uses a cost model
based on empirical observations of ML model performance to
identify important but inexpensive features. With these fea-
tures, Willump trains an approximate model that can identify
and classify “easy” data inputs, but cascade “hard” inputs to
a more powerful model. For example, an approximate model
for toxic comment classification might classify comments with
curse words as toxic but cascade others. Willump automati-
cally tunes cascade parameters to maximize query performance
while meeting an accuracy target. The concept of cascades
has a long history in the ML literature, beginning with [7],

2833

but to the best of our knowledge, Willump is the first system
to automatically generate feature-aware and model-agnostic
cascades from input programs. Willump’s cascades deliver
speedups of up to 5× on real-world ML inference pipelines
without a statistically significant effect on accuracy [4].

Willump complements end-to-end cascades with powerful
compiler optimizations. Willump compiles a subset of Python
to machine code through the Weld system [6], in the process
applying optimizations such as loop fusion and vectorization.
Compilation improves query throughput by up to 4× and
query latency by up to 400× [4].

In this demo paper, we explain use cases for Willump in more
detail (Section 2), discuss Willump’s design and optimizations
(Section 3), and sketch how we plan to demonstrate Willump
(Section 4), so VLDB attendees can visualize Willump trans-
forming and optimizing real-world ML inference pipelines for
dramatic performance increases.

2. BACKGROUND
Willump optimizes ML inference applications whose per-

formance is bottlenecked by feature computation. In such
applications, ML inference is performed by a pipeline of trans-
formations which receives raw input from clients, transforms it
into numerical features (such as by computing statistics about
a raw string input), and executes an ML model on the features
to generate predictions. In this paper we define features as
numerical inputs to an ML model.

It is relatively common for ML inference applications to be
bottlenecked by feature computation, especially when using
less expensive ML models such as linear classifiers and boosted
trees. For example, a recent study of ML inference at Microsoft
found feature computation accounted for over 99% of the run-
time of some production ML inference applications [5]. Feature
computation often dominates performance because it encom-
passes many common but relatively expensive operations in
machine learning, such as querying remote data stores [1].

Recent developments in automated machine learning (Au-
toML) on tabular data have increased the importance of
feature computation. Researchers have developed algorithms
such as Google AutoML Tables and Deep Feature Synthesis [3]
to automatically generate ML inference pipelines dependent
on powerful but computationally expensive features. Willump
optimizes the performance of these pipelines [4].

We diagram an ML inference pipeline in Figure 1. This
pipeline, which we call Toxic, is a simplified version of one of
our real-world benchmark pipelines [4]. It predicts whether
an online comment is toxic. Toxic transforms an input string
into numerical features with two TF-IDF vectorizers: one
word-level and one character-level. Toxic then executes a
logistic regression model on these features to predict whether
the input was toxic. In the real pipeline Toxic is based on,
feature computation accounts for over 99% of runtime.

3. WILLUMP OVERVIEW

3.1 Architecture
Willump is an optimizer for ML inference pipelines. Willump

users write ML inference pipelines in Python as functions from
raw inputs to model predictions. Specifically, these functions
must register model training, prediction, and scoring func-
tions, must be written as a series of explicit Python function

Input String

Word-Level

TF-IDF

Logistic

Regression Model

Char-Level

TF-IDF

Word-Level TF-IDF

Features

Char-Level TF-IDF

Features

Figure 1: A simplified toxic comment classifica-
tion pipeline. The pipeline computes word- and
character-level TF-IDF features from a string and
predicts from them with a logistic regression model.

def pipeline(x1, x2):
feats = lib.transform(x1, x2)
preds = model.predict(feats)
return preds

01010101010
11101101110
10110101101
01011111010
10101101101

Willump Optimization

Infer

Transformation

Graph

End-to-end Cascades

Optimization

Compile

optimized

graph through

Weld

def willump_pipeline(x1, x2):
preds = compiled_code(x1, x2)
return preds

Optimized Pipeline

User Pipeline

Figure 2: A diagram of Willump’s architecture.
Willump infers a transformation graph from a user
pipeline, optimizes it, compiles it through Weld, and
returns an optimized pipeline.

calls, and must represent data using NumPy arrays, SciPy
sparse matrices, or Pandas DataFrames.

Willump operates in three stages: graph construction, op-
timization and compilation. First, Willump’s graph construc-
tion stage converts an ML inference pipeline into a graph of
transformations, such as Figure 1. Then, Willump’s optimiza-
tion stage applies the end-to-end cascades optimization to the
transformation graph. Finally, Willump’s compilation stage
transforms the optimized graph back into a Python function.
In the process, it compiles some graph nodes to optimized
machine code using Weld [6]. We diagram this architecture
in Figure 2. This demo paper will focus on the optimization
stage and end-to-end cascades.

3.2 Automatic End-to-End Cascades
End-to-end cascades speed up ML inference pipelines that

perform classification by classifying some data inputs with
an approximate model dependent on a subset of the origi-
nal model’s features. When using cascades, Willump first
attempts to classify each data input with the approximate
model. Willump returns the approximate model’s prediction
if its confidence exceeds a threshold, which we call the cascade
threshold, but otherwise computes all remaining features and
classifies with the original model. This is shown in Figure 3.

Willump automatically constructs end-to-end cascades from
an ML inference pipeline, its training data, and an accuracy
target. First, Willump partitions features into computation-
ally independent groups and computes their computational
cost and importance to the model. Then, Willump identifies

2834

Model

Compute Selected Features

Compute Remaining Features

Approximate Model

Prediction Prediction

Original Model

Cascades

Optimization Confidence > Threshold

Yes No

Compute All

Features

Figure 3: Willump’s cascades optimization. Willump
attempts to predict data inputs using the approx-
imate model, but cascades to the original model if
the approximate model is not confident.

several sets of computationally inexpensive but predictively
powerful features. For each selected set of features, Willump
trains an approximate model, chooses a cascade threshold
based on the accuracy target, and uses these to estimate the
cost of accurately making predictions using cascades with
those features. Willump constructs cascades using the se-
lected set of features that minimizes this cost. We discuss this
algorithm in more detail in the original Willump paper [4].

4. DEMONSTRATION
At VLDB 2020, we will present a demo showcasing how

Willump’s optimizations improve the performance of real-
world ML inference pipelines. To facilitate virtual atten-
dance and maximize Willump’s accessibility, we have created
a simplified version of Willump specifically for VLDB, im-
plementing Willump’s cascades optimization in < 500 lines
of code with no external dependencies and a user-friendly
interface. It is available on GitHub here: https://github.

com/stanford-futuredata/Willump-Simple. We have im-
plemented our demo in Jupyter notebooks using this simpli-
fied Willump implementation so attendees can access it from
the comfort of their homes. In the notebooks, attendees will
interactively step through the stages of Willump’s cascades
optimization, learning how choices of features or parameters
affect cascades behavior. After the demo, attendees will un-
derstand the performance benefits Willump offers and how
Willump produces them.

Attendees first select an ML inference application to demon-
strate. We provide Jupyter notebook demos correspond-
ing to several of the applications benchmarked in the origi-
nal Willump paper. These applications, curated from high-
accuracy entries in major data science competitions, cover a
diverse range of problem domains from music recommendation
to content moderation.

In each notebook, attendees interactively step through the
process of Willump optimizing an ML inference pipeline and
experiment with Willump’s optimizations. The notebooks
begin with the Python code for the target ML application
and Willump’s optimization interface, demonstrating how
Willump is used in practice. In Figure 4, we show the code for
the Music benchmark, which performs music recommendation
by querying precomputed features from a remote data store.
We expect attendees will first run this code unmodified, but
they can freely modify it (for example, by removing features)
to observe the effects on performance.

Figure 4: The Python code for Music, performing
music recommendation by querying pre-computed
features from a remote data store.

Figure 5: Music feature statistics. Willump measures
the computational cost and permutation importance
of all features.

Figure 6: Feature selection and cost estimation in
Music. Willump selects high-value, low-cost features,
trains an approximate model from them, empirically
determines what percentage of inputs can be accu-
rately approximated, and estimates the resulting
speedup from approximation.

In the next part of the demo, attendees watch Willump
optimize the chosen ML inference pipeline, learning about
Willump’s optimizations in the process. First, Willump com-
putes the computational cost and importance to the model
of all the pipeline’s features and reports them to the user. For
example, in Figure 5, Willump determines that all features in
Music have the same cost (because they are precomputed and
need only be queried from a remote database), but importances
vary greatly.

2835

https://github.com/stanford-futuredata/Willump-Simple
https://github.com/stanford-futuredata/Willump-Simple

Figure 7: A graph of the optimized Music. Willump
attempts to predict each data input with an ap-
proximate model trained on selected features, but
only returns this result if its confidence is above
a threshold, otherwise computing all features and
predicting with the original model.

Next, Willump selects features for its approximate model.
Attendees enter a feature cost cutoff into the notebook. Willump
then selects the features from which it can train the most ac-
curate approximate model given that cost cutoff, estimating
accuracy as the sum of the feature importance scores of the
selected features. For example, in Figure 6, we set a cost
cutoff of one quarter the total feature cost, which is enough
to select four features. Since in this example all features have
the same cost, Willump chooses the four features with the
highest importance scores: the user latent features, user and
song cluster features, and source name features.

After selecting features, Willump trains an approximate
model and uses a validation set to empirically estimate the
percentage of data inputs that it can accurately classify. It
then uses a cost model to estimate the projected speedup
provided by cascades constructed from that model. It dis-
plays these computations to the user, as shown in Figure 6.
Attendees can experiment with different cost cutoffs to max-
imize projected speedup. By doing this, they take the role of
Willump’s optimizer, which automatically experiments with
several sets of features before choosing the best-performing
one. To help attendees visualize how cascades use selected
features, we graph each cascaded pipeline, as in Figure 7

After attendees have chosen an approximate model, Willump
uses cascades to efficiently make predictions. It predicts the
application’s test set using both the original and cascaded
pipelines. It reports accuracy and graphs performance, show-
ing attendees the dramatic speedups that cascades produce
without statistically significant accuracy loss. For example,
in Figure 8, Willump improves Music performance by 2.8×.

5. TAKEAWAYS
Our demo will showcase the power of Willump to improve the

performance of real-world ML inference applications. Atten-
dees will come away understanding what applications Willump
can speed up, how to use Willump, and how Willump’s op-

Figure 8: The performance improvement Willump
produces in Music.

timizations work. Feature computation is the performance
bottleneck in many widely used ML inference applications, but
it is not yet well-studied, and state-of-the-art systems still use
generic approaches such as operator compilation [5]. We hope
that by demonstrating the large performance improvements
that Willump produces with ML-specific optimizations such
as end-to-end cascades, we can spark new interest in this area.

6. REFERENCES
[1] D. Agarwal, B. Long,

J. Traupman, D. Xin, and L. Zhang. Laser: A Scalable
Response Prediction Platform for Online Advertising. In
Proceedings of the 7th ACM International Conference on
Web Search and Data Mining, pages 173–182. ACM, 2014.

[2] D. Crankshaw, X. Wang, G. Zhou,
M. J. Franklin, J. E. Gonzalez, and I. Stoica. Clipper:
A Low-Latency Online Prediction Serving System. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 613–627, 2017.

[3] J. M. Kanter and K. Veeramachaneni. Deep
Feature Synthesis: Towards Automating Data Science
Endeavors. In 2015 IEEE International Conference on
Data Science and Advanced Analytics, DSAA 2015, Paris,
France, October 19-21, 2015, pages 1–10. IEEE, 2015.

[4] P. Kraft, D. Kang, D. Narayanan, S. Palkar, P. Bailis, and
M. Zaharia. Willump: A statistically-aware end-to-end op-
timizer for machine learning inference. In Proc. Conference
on Systems and Machine Learning, MLSys 2020, 2020.

[5] Y. Lee, A. Scolari, B. Chun, M. Santambrogio, M. Weimer,
and M. Interlandi. PRETZEL: Opening the Black
Box of Machine Learning Prediction Serving Systems. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 611–626, 2018.

[6] S. Palkar, J. Thomas, D. Narayanan, P. Thaker,
R. Palamuttam, P. Negi, A. Shanbhag, M. Schwarzkopf,
H. Pirk, S. Amarasinghe, et al. Evaluating End-to-End
Optimization for Data Analytics Applications in Weld.
volume 11, pages 1002–1015. VLDB Endowment, 2018.

[7] P. Viola and M. Jones. Rapid Object Detection Using a
Boosted Cascade of Simple Features. page 511. IEEE, 2001.

2836

	Introduction
	Background
	Willump Overview
	Architecture
	Automatic End-to-End Cascades

	Demonstration
	Takeaways
	References

