
acmqueue | may-june 2024 1

serverless

S
erverless cloud offerings are becoming
increasingly popular for stateless applications
because they simplify cloud deployment. This
article makes the argument that if serverless
platforms could wrap functions in database

transactions, they would also be a good fit for database-
backed applications. There are two unique benefits of such
a transactional serverless platform: time-travel debugging
of past events and reliable program execution with
exactly-once semantics.

Serverless cloud platforms such as AWS (Amazon Web
Services) Lambda and Azure Functions are increasingly
popular for building production applications as varied as
website front ends, ML (machine learning) pipelines, and
image-processing systems. These platforms radically
simplify development by managing application deployment.
Developers can deploy functions with the click of a button
and the platform automatically hosts them, guarantees
their availability, and scales them to handle changing loads.

Serverless platforms are primarily used for stateless

If serverless platforms could wrap
functions in database transactions,
they would be a good fit for
database-backed applications.

QIAN LI

 AND

PETER KRAFT

1 of 13 TEXT
ONLY

Transactions
and Serverless
are Made for Each Other

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3674952&domain=pdf&date_stamp=2024-07-05

acmqueue | may-june 2024 2

serverless

operations such as image resizing or video processing.
Here, we’ll argue they should also be used to deploy
stateful applications, particularly database-backed
applications whose business logic frequently queries
and updates a transactional database such as Postgres
or MySQL. Database-backed applications are ubiquitous
in modern businesses; examples include e-commerce
web services, banking systems, and online reservation
systems. They run primarily on server-based platforms
such as Kubernetes. Thus, they form a massive opportunity
for serverless offerings, including the backends of most
enterprise APIs and much of the modern Web.

To make serverless work for database-backed
applications, serverless platforms would need to make
one critical addition: Allow developers to execute functions
as database transactions. Figure 1 shows an inventory
reservation function implemented in a conventional
serverless platform versus a transactional serverless
platform. The checkInventory and updateInventory
functions perform SQL queries. In a conventional
serverless platform, if a function accesses the database,
developers must obtain a database connection, manually
begin a transaction, execute business logic and SQL
queries, and then finally commit the transaction (figure 1a).

By contrast, a transactional serverless platform
manages the database connection: If a function accesses
the database, it uses a platform-provided connection that
automatically wraps the function in a transaction (figure
1b). The idea of building such a platform has been explored
in several research projects—by these authors1 and
others.3,4

2 of 13

acmqueue | may-june 2024 3

serverless

As this article explains, a transactional serverless
platform not only is more convenient for the developer, but
can also provide powerful benefits for database-backed
applications beyond the capabilities of conventional
serverless or server-based systems.

First, a transactional serverless platform makes
programs easier to debug. Modern applications are
difficult to debug because they run in distributed settings
with frequent concurrent accesses to shared state, so

3 of 13

1 # Check if an item is available, then reserve it
2 def reserveInventory(itemId, num):
3 conn = getConnection(DBurl)
4 conn.beginTransaction()
5 avail = conn.checkInventory(itemId)
6 if (avail > num):
7 conn.updateIinventory(itemId, avail - num)
8 conn.commitTransaction()

a. conventional serverless

1 # Check if an item is available, then reserve it
2 def reserveInventory(itemId, num):
3 # Connection supplied by the platform
4 avail = conn.checkInventory(itemId)
5 if (avail > num):
6 conn.updateIinventory(itemId, avail - num)

b. transactional serverless

FIGURE 1: An inventory reservation function

acmqueue | may-june 2024 4

serverless

bugs often involve complex race conditions that are
not easy to reproduce in a development environment.
Reproducing errors is particularly difficult in conventional
serverless platforms, because their execution
environment is transient and exists only in the cloud. A
transactional serverless platform, however, can simplify
debugging through time travel.2 Because the platform
wraps functions in transactions to coordinate their
state accesses, a debugger can leverage the transaction
log to “travel back in time” and locally replay any past
transactional function execution.

Second, a transactional serverless platform can
provide reliable program execution. Writing reliable
database-backed applications is difficult because they
often coordinate several business-critical tasks, any of
which may fail. In a server-based application, addressing
this problem is difficult as developers must manually
track each request’s status and recover failed requests.
Conventional serverless platforms make this easier
by automatically restarting any task that fails, but this
can be problematic if it causes an operation to execute
multiple times (for example, paying twice). If functions
are transactions, however, the platform can record their
success or failure in the same transaction as their business
logic, thus guaranteeing that each function executes once
and only once.

PROGRAMMING A TRANSACTIONAL
SERVERLESS PLATFORM
A transactional serverless platform could provide
a programming model similar to today’s serverless

4 of 13

acmqueue | may-june 2024 5

serverless

platforms, where developers write programs as workflows
of functions. Each function performs a single operation.
Workflows, implemented as directed graphs or state
machines, orchestrate many functions. Popular serverless
workflow orchestrators include AWS Step Functions and
Azure Durable Functions.

The distinguishing feature of a transactional serverless
platform is that all functions accessing the application
database are wrapped in ACID (atomic, consistent, isolated,
and durable) database transactions, as shown in figure 1b.
These functions must be deterministic and have no side
effects outside the database. Functions not accessing the
database, such as those making external API calls, work
the same as they do in conventional serverless platforms.

As a running example for this article, figure 2 shows a
diagram of a serverless checkout service workflow that
first reserves inventory for all items in an order, then
processes payment for the order, and finally marks the

5 of 13

FIGURE 2: Serverless checkout service workflow

start

failure

get
order

success path

rollback path

cancel
order

reserve
inventory

un-reserve
inventory

process
payment

mark
order
ready

to fulfill

success

acmqueue | may-june 2024 6

serverless

order as ready to fulfill. Each step is implemented in a
separate function. All functions except “process payment”
(which uses a third-party payment provider) contact the
database and are wrapped in transactions. If any step fails,
the workflow runs rollback functions to undo previous
operations (e.g., returning reserved inventory if the
payment fails).

TIME-TRAVEL DEBUGGING
One powerful and unique feature enabled by a
transactional serverless platform is time-travel
debugging: letting developers faithfully replay production
traces in a local development environment to reproduce
bugs that happened in the past. Time-travel debugging
is especially useful for database-backed applications
because they frequently run in distributed environments
where bugs manifest as race conditions that occur only
under high concurrency and are nearly impossible to
reproduce locally.
For example, suppose the “reserve inventory” operation in
figure 2 is split into two separate transactional functions,
as in figure 3, which shows a buggy implementation of
the “reserve inventory” operation. This implementation
contains a race condition where if two requests arrive at
the same time, both can reserve the same item, potentially
causing the vendor to sell more items than it has available.

Debugging issues like this is tricky because they surface
only if multiple concurrent requests with specific inputs
are interleaved in a specific way with a particular database
state. To reproduce the bug locally, the developer must
determine not only which requests caused the bug, but

6 of 13

acmqueue | may-june 2024 7

serverless

also the order in which different operations in those
requests interleaved and the exact database state that
made the bug possible. In a conventional platform, tracking
execution order and reconstructing database state are
prohibitively expensive: Requests execute concurrently
on many parallel threads on many distributed servers,
potentially modifying the database thousands of times per
second.

By contrast, prior research2 has shown that a
transactional serverless platform makes faithful replay
practical because each function is wrapped in an isolated,
atomic, and deterministic transaction. This enables a time-
travel debugger, which can faithfully replay a production
trace (including race conditions and concurrency bugs) in
two steps:

7 of 13

check
avail = 1

update
avail = 0

1 def reserveInventory(itemId, num):
2 avail = execTxn(checkInventory(itemId))
3 if (avail > num):
4 execTxn(updateIinventory(itemId, avail - num))a. conventional serverless

R1

oversell!
check

avail = 1
update
avail = 0R2

FIGURE 3: A buggy implementation of the “reserve inventory opeRATION”

acmqueue | may-june 2024 8

serverless

1. Using database transaction logs, it can reconstruct
the state of the application database at the time of the
trace’s first request.

2. It can locally execute each request in the trace on the
reconstructed database, executing their transactional
functions in the order they originally executed in the
application database’s transaction log.
A time-travel debugger improves developers’ lives by

reproducing complex concurrency bugs in a controlled
local environment. For example, if the debugger is run on a
trace containing the bug described in figure 3, it executes
both check transactions on a database containing only
one item, then executes both update transactions, thus
overselling the item and reproducing the bug. This process
is shown in figure 4.

A time-travel debugger can provide another powerful
feature called retroaction: the execution of modified code
over past events. For a given trace, the debugger performs
retroaction similarly to faithful replay but uses the
updated implementation of each function instead of the
original one. Retroaction is especially useful for regression
testing: running a new code version over old production

8 of 13

check
avail = 1

DB
avail = 1

update
avail = 0

R1
check

avail = 1

R2 R2
update
avail = 0

R1

oversell!

FIGURE 4: A time-travel debugger replaying an execution trace

acmqueue | may-june 2024 9

serverless

traces to verify it handles them correctly. For example,
let’s say the bug in figure 3 was fixed by combining the
check and update functions into a single transactional
function. A time-travel debugger can retroactively test
this fix by re-executing the original trace but running
the combined function in place of the original checks and
updates. As shown in figure 5, this validates that the fix
eliminates the bug.

RELIABLE PROGRAM EXECUTION
Another key benefit of a transactional serverless platform
is reliable program execution. Many database-backed
applications must coordinate multiple business-critical
tasks, any of which may fail. For example, the checkout
workflow in figure 2 performs three tasks for each order:
(1) reserving its inventory; (2) processing its payment; and
(3) marking it as ready to fulfill. To execute reliably, such
applications must not only handle failures in any of those
tasks, but also recover from interruptions such as server
crashes. Specifically, they must have two properties:

9 of 13

FIGURE 5: A time-travel debugger testing a fix to the reserve INVENTORY bug

check
avail = 1
update
avail = 0

DB
avail = 1

R1
check

avail = 0
no

update

R2

fixed!

acmqueue | may-june 2024 10

serverless

3 Programs run to completion. If a program begins
executing, it must continue, recovering through any
interruptions until it reaches a terminal success or
failure state. For example, if the checkout service is
interrupted after processing a payment, it must recover
and either mark the order as fulfilled (if the payment
succeeded) or cancel the order and return reserved
inventory (if the payment failed).

3 Operations execute exactly once. While executing a
program, each of its operations must execute once
and only once. For example, if you are recovering the
checkout service after it is interrupted, you cannot
naively resend the payment request; otherwise, the
customer may pay twice. You must instead determine the
status of the original payment request (whether it was
sent at all, and if so, whether it succeeded or failed) and
recover accordingly.
Manually obtaining these properties in a traditional

server-based application is difficult. One approach is to
write the application as a state machine that checkpoints
its state to persistent storage after every operation. If
the program is interrupted, resume execution from the
last checkpointed state. To ensure exactly-once execution,
make all operations idempotent so they can be safely re-
executed during recovery. While such an approach works,
it is tedious and error-prone, and requires careful program
design.

Existing serverless platforms simplify writing programs
that run to completion but do not provide exactly-once
execution. This follows naturally from the serverless
programming model. If a program is written as a workflow

10 of 13

acmqueue | may-june 2024 11

serverless

of functions, the workflow orchestrator can record the
workflow’s state after every function execution, then
resume from the last recorded state if workflow execution
is interrupted. Thus, serverless function orchestrators
such as AWS Step Functions and Azure Durable Functions
run workflows to completion, restarting each function
until it succeeds or reaches a predefined failure state.

Durable workflow engines such as Temporal provide
similar guarantees for server-based programs, provided
they are written as workflows of operations. Because
orchestrators treat functions as black boxes, however,
they cannot provide exactly-once semantics, but instead
restart each function until it succeeds. If a function crashes
after completion but before its success is recorded, it is
re-executed, potentially corrupting data.

As prior work has shown,1,4 a transactional serverless
platform can guarantee not only that programs run to
completion, but also that transactional operations execute
exactly once. Because the platform wraps functions in
transactions, it can record the success or failure of a
transactional function in the same transaction as the
function. Therefore, if a function completes, its success
or failure is always recorded in the database, while if
a function fails, all its actions are rolled back by the
database. Thus, the platform knows never to re-execute a
function with a recorded result but can always safely re-
execute without a recorded result.

CONCLUSION
Database-backed applications are an exciting new
frontier for serverless computation. By tightly

11 of 13

acmqueue | may-june 2024 12

serverless

integrating application execution and data management,
a transactional serverless platform enables many
new features not possible in either existing serverless
platforms or server-based deployments.
This article has explained how such a platform could
benefit application debuggability and reliability.

Its additional benefits include:
3 Observability, as the platform can track the full history

(provenance) of each data item through all functions that
have modified it.

3 Security, as the platform can monitor all operations on
data in realtime.

3 Performance, as the platform can collocate
transactional functions with the application database.

We look forward to future work in this space.

References
1. Kraft, P., Li, Q., Kaffes, K., Skiadopoulos, A., Kumar, D.,

Cho, D., Li, J., Redmond, R., Weckwerth, N., Xia, B., Bailis,
P., Cafarella, M., Graefe, G., Kepner, J., Kozyrakis, C.,
Stonebraker, M., Suresh, L., Yu, X., Zaharia, M. 2023.
Apiary: a DBMS-integrated transactional function-as-a-
service framework. arXiv:2208.13068; https://arxiv.org/
abs/2208.13068.

2. Li, Q., Kraft, P., Cafarella, M., Demiralp, C., Graefe,
G., Kozyrakis, C., Stonebraker, M., Suresh, L., Yu, X.,
Zaharia, M. 2023. 𝑅3: record-replay-retroaction for
database-backed applications. Proceedings of the
VLDB Endowment 16(11), 3085–3097; https://dl.acm.org/
doi/10.14778/3611479.3611510.

3. Wu, C., Sreekanti, V., Hellerstein, J. M. 2020.

12 of 13

https://arxiv.org/abs/2208.13068
https://arxiv.org/abs/2208.13068
https://arxiv.org/abs/2208.13068
https://dl.acm.org/doi/10.14778/3611479.3611510
https://dl.acm.org/doi/10.14778/3611479.3611510

acmqueue | may-june 2024 13

serverless

Transactional causal consistency for serverless
computing. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 83–
97; https://dl.acm.org/doi/10.1145/3318464.3389710.

4. Zhang, H., Cardoza, A., Chen, P. B., Angel, S., Liu, V. 2020.
Fault-tolerant and transactional stateful serverless
workflows. In 14th Usenix Symposium on Operating
Systems Design and Implementation, 1187–1204; https://
www.usenix.org/conference/osdi20/presentation/zhang-
haoran.

Qian Li is a co-founder at DBOS, Inc. She received her PhD
in computer science from Stanford University, advised by
Christos Kozyrakis. Her research interests include serverless,
databases, and cloud resource management.

Peter Kraft is a co-founder at DBOS, Inc. He obtained his
PhD in computer science from Stanford University, where he
worked with Matei Zaharia and Peter Bailis. His interests are
in databases, cloud infrastructure, and distributed systems.
Copyright © 2024 held by owner/author. Publication rights licensed to ACM.

13 of 13

https://dl.acm.org/doi/10.1145/3318464.3389710
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran

