
The VLDB Journal
https://doi.org/10.1007/s00778-020-00633-6

SPEC IAL ISSUE PAPER

DIFF: a relational interface for large-scale data explanation

Firas Abuzaid1 · Peter Kraft1 · Sahaana Suri1 · Edward Gan1 · Eric Xu1 · Atul Shenoy2 · Asvin Ananthanarayan2 ·
John Sheu2 · Erik Meijer3 · Xi Wu4 · Jeff Naughton4 · Peter Bailis1 ·Matei Zaharia1

Received: 2 February 2020 / Revised: 16 August 2020 / Accepted: 26 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
A range of explanation engines assist data analysts by performing feature selection over increasingly high-volume and
high-dimensional data, grouping and highlighting commonalities among data points. While useful in diverse tasks such as
user behavior analytics, operational event processing, and root-cause analysis, today’s explanation engines are designed as
stand-alone data processing tools that do not interoperate with traditional, SQL-based analytics workflows; this limits the
applicability and extensibility of these engines. In response, we propose the DIFF operator, a relational aggregation operator
that unifies the core functionality of these engines with declarative relational query processing. We implement both single-
node and distributed versions of the DIFF operator in MB SQL, an extension of MacroBase, and demonstrate how DIFF can
provide the same semantics as existing explanation engines while capturing a broad set of production use cases in industry,
including at Microsoft and Facebook. Additionally, we illustrate how this declarative approach to data explanation enables
new logical and physical query optimizations. We evaluate these optimizations on several real-world production applications
and find that DIFF in MB SQL can outperform state-of-the-art engines by up to an order of magnitude.

Keywords Data exploration · Explanations · Big data · Data analytics · Databases · Feature selection · Query optimization

B Firas Abuzaid
fabuzaid@cs.stanford.edu

Peter Kraft
kraftp@stanford.edu

Sahaana Suri
sahaana@stanford.edu

Edward Gan
egan1@stanford.edu

Eric Xu
ericxu0@stanford.edu

Atul Shenoy
atul.shenoy@microsoft.com

Asvin Ananthanarayan
asvina@microsoft.com

John Sheu
jsheu@microsoft.com

Erik Meijer
erikm@fb.com

Xi Wu
wuxi@google.com

Jeff Naughton
naughton@google.com

1 Introduction

Given the continued rise of high-volume, high-dimensional
data sources [9], a range of explanation engines (e.g., Mac-
roBase, Scorpion, and Data X-Ray [8,48,56,64,66]) have
been proposed to assist data analysts in performing fea-
ture selection [31], grouping and highlighting commonalities
among data points. For example, a product manager respon-
sible for the adoption of a new mobile application may
wish to determine why user engagement declined in the
past week. To do so, she must inspect thousands of factors,
from the application version to user demographic, device

Peter Bailis
pbailis@cs.stanford.edu

Matei Zaharia
matei@cs.stanford.edu

1 Stanford DAWN Project, Stanford University, Stanford, CA,
USA

2 Microsoft Inc, Redmond, WA, USA

3 Facebook Inc, Menlo Park, CA, USA

4 Google Inc, Mountain View, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-020-00633-6&domain=pdf
http://orcid.org/0000-0002-1424-4554

Abuzaid et al.

type, and location metadata, as well as combinations of these
features. With conventional business intelligence tools, the
product manager must manually perform a tedious set of
GROUP BY, UNION, and CUBE queries to identify common-
alities across groups of data records corresponding to the
declined engagement metrics. Explanation engines automate
this process by identifying statistically significant combi-
nations of attributes, or explanations, relevant to a partic-
ular metric (e.g., records containing device_make="Apple

", os_version="9.0.1", app_version="v50" are two
times more likely to report lower engagement). As a result,
explanation engines enable order-of-magnitude efficiency
gains in diagnostic and exploration tasks.

Despite this promise, in our experience developing and
deploying the MacroBase explanation engine [8] at scale
across multiple teams at Microsoft and Facebook, we have
encountered two challenges that limit the applicability of
explanation engines: interoperability and scalability.

First, analysts often want to search for explanations as
part of a larger workflow: An explanation query is typically
a subcomponent of a larger pipeline combining extract–
transform–load (ETL) processing, OLAP queries, and GUI-
based visualization. However, existing explanation engines
are designed as stand-alone tools and do not interoperatewith
other relational tools or workflows. As a result, interactive
explanation-based analyses require substantial pre- and post-
processing of results. For example, in data warehouses with a
snowflake or star schema, analysts must combine fact tables
with dimension tables using complex projections, aggrega-
tions, and JOINs prior to use in explanation analyses [39].
To construct downstream queries based on the results of an
explanation, analysts must manually parse and transform the
results to be compatible with additional relational operators.

Second, analysts often require explanation engines that
can scale to growing data volumes, while still remaining
interactive. For example, a typical explanation analysismight
require processing weeks of raw event logs to identify a
subtle issue arising from a small subpopulation of users.
Since these analyses are usually performed with a human
in the loop, a low-latency query response is highly advanta-
geous. In our experience deploying MacroBase at Microsoft
and Facebook, we found that existing approaches for data
explanation did not scale gracefully to the dozens of high-
cardinality columns and hundreds of millions of raw events
we encountered. We observed that even a small explanation
query over a day’s worth ofMicrosoft’s production telemetry
data required upward of 10 min to complete.

In response to these two challenges, we introduce the DIFF
operator, a declarative relational operator that unifies the core
functionality of several explanation engines with traditional
relational analytics queries. Furthermore, we show that the
DIFF operator can be implemented in a scalable manner.

To address the first challenge, we exploit the observation
that many explanation engines and feature selection routines
summarize differences between populations with respect to
various difference metrics or functions designed to quan-
tify particular differences between disparate subgroups in the
data (e.g., the prevalence of a variable between two popula-
tions).Wecapture the semantics of these engines via ourDIFF
operator, which is parameterized by these difference met-
rics and can generalize to application domains such as user
behavior analytics, operational event processing, and root
cause analysis. DIFF is semantically equivalent to a parame-
terized relational query composed of UNION, GROUP BY, and
CUBEoperators and therefore integrateswith current analytics
pipelines that utilize a relational data representation.

However, incorporating the DIFF operator into a relational
query engine raises two key scalability questions:

1. What logical layer optimizations are needed to efficiently
execute SQL queries when combining DIFF with other
relational algebra operators, especially JOINs?

2. What physical layer optimizations—algorithms, indexes,
and storage formats—are needed to evaluate DIFF effi-
ciently?

At the logical layer, we present several new optimizations
for DIFF. The first optimization is informed by the snowflake
and star schemas common in datawarehouses, where data are
augmented with metadata via JOINs before running explana-
tion queries [39]. A naïve execution of this workflow would
fully materialize the JOINs and then evaluate DIFF on their
output.We show that if the returned output size after comput-
ing the JOINs far exceeds that of the DIFF, it is more efficient
to perform the DIFF operation before materializing the JOIN

s, thereby applying a predicate pushdown-style strategy to
DIFF–JOIN queries (similar to learning over JOINs [41]). We
introduce an adaptive algorithm that dynamically determines
the order of operations, yielding up to 2× speedups on real
data.

In our second logical optimization, we show how to lever-
age functional dependencies present in the input data to prune
semantically redundant explanations. For instance, joining
with a geographic dimension table may provide state and
country information—but for explanation queries, return-
ing both fields is superfluous, as an explanation containing
state = "CA" is equivalent to one containing state = "

CA", country = "USA". We show how pruning candidate
explanations using these functional dependencies can yield
up to 20% speedups. We also discuss how to extend this idea
to support “soft” functional dependencies—unlike “hard”
FDs that are guaranteed to hold throughout the entire dataset,
soft FDs only hold with high probability.

Our third logical optimization exploits the statistical
nature of the mean shift, a popular difference metric seen in

123

DIFF: a relational interface for large-scale data explanation

many industry use cases for DIFF. We show that, by deriving
inequality bounds on and then computing the variance of var-
ious candidate explanations during execution, we can apply
a pruning rule that discards many candidates and accelerates
query runtimes. Our experiments show that, for datasets with
attributes exhibiting sufficiently low variance, our variance
pruning optimization can improve query performance by as
much as 5×.

Our fourth proposed logical optimization is informed by
a common usage pattern of DIFF observed in industry; we
find that DIFF query workloads are often highly repetitive,
with successive queries sharing significant overlap in terms
of their input parameters. Therefore, we propose a multi-
query optimization for DIFF, which takes in a set of a priori
DIFF queries over the same input relations but with different
parameters and evaluates them as a single super-query, thus
reusing work across multiple queries.

At the physical layer, we implement DIFF based on
a generalized version of the Apriori algorithm from Fre-
quent Itemset Mining [2]. However, we develop several
complementary optimizations, including hardware-efficient
encoding of explanations in packed integers, storing columns
in a columnar format, and judiciously representing specific
columns using bitmaps. By exploiting properties in the input
data, such as low-cardinality columns, and developing a
cost-based optimizer for selecting an efficient physical rep-
resentation, our optimized implementation of DIFF delivers
speedups of up to 17× compared to alternatives.

To illustrate the performance improvements of these log-
ical and physical optimizations, we implement the DIFF

operator inMBSQL, an extension toMacroBase.Wedevelop
both a single-node implementation and a distributed imple-
mentation in Spark [69], allowing us to scale to hundreds
of millions of rows or more of production data. We bench-
mark our implementation of DIFF with queries derived
from several real-world analyses, including workloads from
Microsoft and Facebook and show that MB SQL can outper-
form other explanation query engines, such as MacroBase
andRSExplain[56], by up to 10× despite their specialization.
Additionally, MB SQL outperforms related dataset mining
algorithms from the literature, including optimized Frequent
Itemset Mining algorithms found in Spark MLlib [50], by up
to 4.5×.

Finally, to better serve industry use cases, we introduce
a companion operator, called ANTI DIFF, that returns the
complement of the DIFF operator’s output. We show that
ANTI DIFF can also provide valuable insights inmany indus-
trial settings, and we demonstrate that it can take advantage
of the same logical and physical optimizations previously
mentioned for efficient execution. Furthermore, we present a
pruning rule specific to ANTI DIFF, which achieves to a 2×
improvement in runtime compared to a naïve implementa-
tion.

In summary, we present the following contributions:

– We propose the DIFF operator, a declarative relational
aggregation operator that unifies the core functionality
of explanation engines with relational query engines.

– We present novel logical optimizations to evaluate the
DIFF operator in conjunction with JOINs and functional
dependencies;we also present amulti-queryoptimization
technique, as well as our variance pruning optimization.
Each of these optimizations can accelerate DIFF queries,
in some cases by as much as 5×.

– We introduce an optimized physical implementation
of the DIFF operator that combines dictionary encod-
ing, columnar storage, and data-dependent, cost-based
bitmap indexes, yielding up to a 17× improvement in
performance.

– We introduce a companion operator, called ANTI DIFF,
that evaluates the complement of the DIFF operator. We
show that ANTI DIFF can take advantage of the same
optimizations proposed for DIFF; in addition, we propose
a logical optimization specific to ANTI DIFF that yields
a 2× speedup.

2 The DIFF operator

The DIFF operator is a relational aggregation operator that
provides a declarative interface for explanation queries. In
this section, we introduce the DIFF operator’s API, sample
usage, and semantics and detail how to replicate the behavior
of the explanation engines in Sect. 2.3.

2.1 DIFF operator syntax and example workflow

We present syntax for the DIFF operator in Backus–Naur
form in Fig. 1. The DIFF operator takes as input two
relations— the test relation and the control relation. Similar
to a CUBE query [29], DIFF outputs combinations of attribute–
value pairs (e.g., make="Apple", os="11.0"), which we
refer to as explanations, in the formof a single relation,where
each row consists of an explanation describing how the test
and control relations differ.

DIFF is parameterized by a MAX ORDER argument, which
specifies the maximum number of attributes considered per

Fig. 1 DIFF syntax in extended Backus–Naur form

123

Abuzaid et al.

Table 1 Generally applicable built-in difference metrics

Difference
metric

Description

Support Fraction of rows with an attribute

Odds ratio Odds that a row will be in the test relation versus the
control relation if it has an attribute versus if it does
not

Risk ratio Probability that a rowwill be in the test relation versus
the control relation if it has an attribute versus if it does
not

Mean shift Percent change in a column’s mean for rows contain-
ing an attribute in the test versus the control relation

explanation, and one or more difference metric expressions
that define the utility of an explanation. These expressions
consist of a difference metric that quantifies the difference
between explanations and a corresponding threshold; the dif-
ference metric is a function that acts on each explanation to
define its utility, and explanations that do not satisfy the util-
ity threshold are pruned from the output.

As we demonstrate in Sect. 2.3, different difference met-
rics allow the DIFF operator to encapsulate the functionality
of a variety of explanation engines. By default, the DIFF oper-
ator can make use of four provided difference metrics, which
we describe in Table 1. While we found these difference
metrics are sufficient for our industrial use cases, the DIFF

operator supports user-defined difference metrics as well, as
we discuss in Sect. 2.4.
Example workflow. To demonstrate how to construct and
utilizeDIFFqueries,we consider the case of amobile applica-
tion developer who has been notified of increased application
crash rates in the last few days. The developer has a relational
database of log data from instances of both successful and
failed sessions from her application:

timestamp app_version device_type os crash

08-21-18 00:01 v1 iPhone X 11.0 false
...
08-28-18 12:00 v2 Galaxy S9 8.0 true
...
09-04-18 23:59 v3 HTC One 8.0 false

With this input, the developer must identify potential expla-
nations or causes for the crashes. To do so, she can make use
of the DIFF operator by executing the following query:

SELECT * FROM
(SELECT * FROM logs WHERE crash = true)

crash_logs
DIFF

(SELECT * FROM logs WHERE crash = false)
success_logs

ON app_version , device_type , os
COMPARE BY risk_ratio >= 2.0, support >= 0.05

MAX ORDER 2;

Here, the developer first selects her test relation to be the
instances when a crash occurred in the logs (crash_logs
) and the control relation to be instances when a crash
did not occur (success_logs). In addition, she specifies
the dimensions to consider for explanations of the crashes:
app_version, device_type, os.

The developer must also specify how potential explana-
tions should be ranked and filtered; she can accomplish this
by specifying one or more difference metrics and thresh-
olds. In this scenario, she first specifies the risk ratio, which
quantifies how much more likely a data point matching this
explanation is to be in the test relation than in the control
relation. By specifying a threshold of 2.0 for the risk ratio,
all returned explanations will be at least twice as likely to
occur in crash_logs than in success_logs. Further, the
developer only wants to consider explanations that have rea-
sonable coverage (i.e., explain a substantial portion of the
crashes). Therefore, she specifies a support threshold of 0.05,
which guarantees that every returned explanation will occur
at least 5% of the time in crash_logs. Finally, the developer
includes the clause MAX ORDER 2 to specify that the returned
explanations should never contain more than two attributes.
Running this DIFF query, the developer obtains the following
results:

app_version device_type os risk_ratio support

v1 – – 10.5 15%
– iPhone XS – 9.5 10%
– – 10.0 8.25 12%
v2 iPhone X – 7.25 30%
– Pixel 4 10.2 10.0 35%
v2 – 10.1 7.75 25%

For each explanation, the output includes the explanation’s
attributes, risk ratio, and support. A NULL value (denoted
as "-" in the output) indicates that the attribute can be any
value, similar to the output of a CUBE query. Thus, the first
explanation—app_version="v1"—is 10.5×more likely to
be associated with a crash in the logs, and it occurs in 15%
of the crashes.

The developer in our scenario may find these results
uninteresting—they may be known bugs. So, as a follow-
up, she changes the MAX ORDER clause to be MAX ORDER 3

and reruns the query:

app_version device_type os risk_ratio support

v1 – – 10.5 15%
– iPhone XS – 9.5 10%
– – 10.0 8.25 12%
v2 iPhone X – 7.25 30%
– Pixel 4 10.2 10.0 35%
v2 – 10.1 7.75 25%
v3 Galaxy S9 11.0 9.75 20%

123

DIFF: a relational interface for large-scale data explanation

Thenew row{app_version="v3", device_type="Galaxy

S9", os="11.0"} warrants further study; the developer
has not encountered this explanation before. In response, she
can issue a second DIFF query comparing this week’s crashes
to last week’s:

SELECT * FROM
(SELECT * FROM logs WHERE crash = true and

timestamp BETWEEN 08-28-18 AND
09-04-18) this_week

DIFF
(SELECT * FROM logs WHERE crash = true and

timestamp BETWEEN 08-21-18 AND
08-28-18) last_week

ON app_version , device_type , os
COMPARE BY risk_ratio >= 2.0, support >= 0.05

MAX ORDER 3;

which yields the following result:

app_version device_type os risk_ratio support

v3 Galaxy S9 11.0 20.0 75%

In the most recent week, our explanation from the previous
query shows up 20× more often, and 75% of the crashes can
be attributed to it. With this DIFF query, the developer has
confirmed that there is likely a bug in her application causing
GalaxyS9devices runningAndroidOSversion 11.0with app
version v3 to crash.

2.2 Formal definition of theDIFF operator

In this section, we define the DIFF operator and its two com-
ponents: explanations and difference metrics.

Definition 1 Explanation We define an explanation of order
k to be a set of k attribute values:

A∗ = {A1 = a1, . . . , Ak = ak} (1)

We borrow this definition from prior work on explanation
engines, including RSExplain [56], Scorpion [66], and Mac-
roBase [8]. In practice, explanations typically consist of
categorical attributes, although our definition can extend to
continuous attributes as well, which we discuss in Sect. 2.5.

Definition 2 Difference Metric A difference metric filters
candidate explanations based on some measure of severity,
prevalence, or relevance; examples include support and risk
ratio. We refer to a difference metric and its threshold as
a difference metric clause γ (e.g., support >= 0.05). The
output of a difference metric clause is a Boolean indicating
whether the explanation A∗ “passed” the difference metric.
DIFF returns all attribute sets A∗ from R and S that pass all
specified difference metrics.

Formally, a difference metric clause γ takes as input two
relations R and S and an explanationA∗; it is parameterized
by:

– A setF of d aggregation functions evaluated on R and S
– A comparison function h that takes the outputs ofF on R
and S to produce a singlemeasure:Rd×R

d×R
d×R

d →
R

– A user-defined minimum threshold, θ

Adifferencemetric is computed by first evaluating the aggre-
gation functions F over the relations R and S and the
attribute set A∗. We evaluate F first over the entire relation,
F R
global = F(R), and then strictly over the rows matching the

attributes inA∗:F R
attrs = F(σA∗(R)). Similarly, we applyF

on S, which gives us F S
global and F S

attrs. Each evaluation of F
returns a vector of values in R

d , and F R
global, F S

global, F R
attrs,

and F S
attrs form the input to h. If h’s output is greater than or

equal to θ , then the attribute setA∗ has satisfied the difference
metric:

γ = h(F R
global, F R

attrs, F S
global, F S

attrs) ≥ θ (2)

Using this definition, we can express many possible differ-
ence metrics, including those listed in Table 1, as well as
custom UDFs. For example, the support difference metric,
which is defined over a single relation, would be expressed
as:

γsupport:=

⎧
⎪⎨

⎪⎩

F = COUNT(*)

h = F R
attrs

F R
global

(3)

where θ∗ denotes a user-specified minimum support thresh-
old. The risk ratio, meanwhile, would be expressed as:

γrisk_ratio:=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F = COUNT(*)

h =
F R
attrs

F R
attrs + F S

attrs

F R
global − F R

attrs

(F R
global − F R

attrs) + (F S
global − F S

attrs)

(4)

Finally, the mean shift for a metric column m is the ratio
between themean ofm in R for a given explanationA and the
mean ofm in S for that same explanation.Using the definition

123

Abuzaid et al.

of the difference metric, we can express it as follows:

γmean_shift:=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F = { f = SUM(m), g = COUNT(*)}

h =
f Rattrs
gR
attrs

f Sattrs
gSattrs

(5)

Definition 3 DIFF We now define the DIFF operator Δ,
which has the following inputs:

– R, the test relation
– S, the control relation
– �, the set of difference metrics
– A = {A1, . . . , Am}, the dimensions, which are categori-
cal attributes common to both R and S

– k, the maximum order of dimension combinations

Algebraically, a DIFF query is expressed as follows:

Δ�,A,k(R, S),

or Δ(R, S) for the sake of brevity.
The DIFF operator applies the difference metrics � to

every possible explanationwith order k or less found in R and
S; the explanations can only be derived from A. The differ-
ence metrics are evaluated over every explanationA∗—if the
explanation satisfies all the difference metrics, it is included
in the output of DIFF, along with its values for each of the
difference metrics.

A DIFF query can be translated into standard SQL
using multiple GROUP BY subqueries, as we illustrate in
Appendix A. This translation step is costly, however, both
for data analysts and for relational databases: as is shown in
Appendix, the equivalent query is often hundreds of lines of
SQL that database query planners fail to optimize and execute
efficiently. In our experiments, we benchmark DIFF queries
against equivalent SQL queries in Postgres and find that our
implementation of DIFF is orders of magnitude faster.

With this new relational operator, we introduce two new
benefits: (i) Users can concisely express their explana-
tion queries in situ with existing analytic workflows, rather
than rely on specialized explanation engines, and (ii) query
engines—both on a single node or in the distributed case—
can optimize DIFF across other relational operators, such as
selections, projections, and JOINs. As we discuss in Sects. 4
and 5, integrating DIFF with existing databases requires
implementing new logical optimizations at the query plan-
ning stage and new physical optimizations at the query
execution stage. This integration effort can yield order-of-
magnitude speedups, as we illustrate in our evaluation.

2.3 DIFF generality

The difference metric abstraction enables the DIFF operator
to encapsulate the semantics of several explanation engines
and Frequent ItemsetMining techniques via a single declara-
tive interface. To highlight the generalization power of DIFF,
we describe these engines/techniques and show how DIFF

can implement them either partially or entirely; we imple-
ment several of these generalizations and report the results
in our evaluation.

MacroBase MacroBase [8] is an explanation engine that
explains important or unusual behavior in data. The Mac-
roBase default pipeline computes risk ratio on explanations
across an outlier set and inlier set and returns all explanations
that pass a threshold. As the difference metric abstraction
arose as a natural evolution of (and replacement for) the
MacroBase default pipeline after our experience deploying
MacroBase at scale, DIFF can directly express MacroBase
functionality using a query similar to the example query
in Sect. 2.1. We later on evaluate the performance of such
a query compared to a semantically equivalent MacroBase
query and find that our implementation of DIFF is over 6×
faster.

Data X-Ray Data X-Ray[64] is an explanation engine that
diagnoses systematic errors in large-scale datasets. From
Definition 10 in [64], we can express Data X-Ray’s Diag-

nosis Cost as a difference metric: Let ε = F R
attrs

F R
attrs + F S

attrs

,

and let α denote the “fixed factor” that users can parameter-
ize to tune a Data X-Ray query. The Diagnosis Cost can then
be written as:

γdiagnosis_cost:=
{
F = COUNT(*)

h = log 1
α

+ F R
attrs log

1
ε

+ F S
attrs log

1
1−ε

Once the Diagnosis Cost is computed for all attributes, Data
X-Ray then tries to find the set of explanations with the least
cumulative total cost that explains all errors in the data. The
Data X-Ray authors show that this reduces to a weighted set
cover problem, and they develop an approximate set-cover
algorithm to determine what set of explanations to return.
Thus, to capture Data X-Ray’s full functionality, we evaluate
a DIFF query to search for explanations and then post-process
the results using a separate weighted set-cover solver. We
implement such an engine and find that it obtains the same
output and performance as Data X-Ray.

Scorpion Scorpion [66] is an explanation engine that finds
explanations for user-identified outliers in a dataset. To rank
explanations, Scorpion defines a notion of influence in Sec-
tion 3.2 in [66], which measures, for an aggregate function

123

DIFF: a relational interface for large-scale data explanation

f , the delta between f applied to the entire input table R
and f applied to all rows not covered by the explanation in
R. Let g denote the aggregation function COUNT(*), and let
λ denote Scorpion’s interpolation tuning parameter. Then,
the influence can be expressed as the following difference
metric:

γinfluence:=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F = { f , g}
h = λ

remove(f Rglobal, f Rattrs)

gR
attrs

−(1 − λ)
remove(f Sglobal, f Sattrs)

gSattrs

In this definition, remove refers to the notion of computing
an incrementally removable aggregate, which the Scorpion
authors define in Sect. 5.1 of their paper. An aggregate is
incrementally removable if the updated result of removing a
subset, s, from the inputs, R, can be computed by only read-
ing s. For example, SUM is incrementally removable because
SUM(R - s) = SUM(R) - SUM(s). Here, we com-
pute the influence for an explanation by removing the
explanation’s aggregate f Rattrs from the total aggregate f Rglobal;
by symmetry, we do the same for the aggregates on S.

Unlike DIFF, Scorpion explanations can specify sets
of values for a specific dimension column and can sup-
port more flexible GROUP BY aggregations. Nevertheless, the
DIFF operator provides a powerful way of computing the key
influence metric.

RSExplain RSExplain [56] is an explanation engine that
provides a framework for finding explanations in database
queries. RSExplain analyzes the effect explanations have on
numerical queries or arithmetic expressions over aggregation
queries (e.g., q1/q2, where q1 and q2 apply the same aggre-
gation f over different input tables). RSExplain measures
the intervention of an explanation, which is similar to the
influence measure used in Scorpion. For a numerical query
q1/q2 with aggregation f , the intervention difference metric
would be written as:

γintervention:=

⎧
⎪⎨

⎪⎩

F = { f }
h = remove(f Rglobal, f Rattrs)

remove(f Sglobal, f Sattrs)

Frequent Itemset Mining A classic problem from data min-
ing, Frequent ItemsetMining (FIM) [2], has a straightforward
mapping to the DIFF operator: We simply construct a DIFF

query with an empty control relation and whose sole dif-
ference metric is support. In our evaluation, we benchmark
support-only DIFF queries against popular open-source fre-
quent itemset miners, such as SPMF [27] on a single node,
and Spark MLlib in the distributed setting . We find that

DIFF is over 36× faster than SPMF’s Apriori, 3.4× faster
than SPMF’s FPGrowth, and up to 4.5× faster than Spark
MLlib’s FPGrowth.

Multi-structural databases Multi-structural databases (MSDBs)
are a data model that supports efficient analysis of large,
complex datasets over multiple numerical and hierarchical
dimensions [24,25]. MSDBs store data dimensions as a lat-
tice of topics anddefine anoperator calledDIFFERENTIATE
which returns a set of lattice nodes corresponding to higher-
than-expected outlier data point occurrence rates.

DIFFERENTIATE approximates an NP-hard optimiza-
tion problem that rewards small sets which explain a large
fraction of the outlier data points. Because DIFF operates
over relational tables and not MSDBs, we cannot precisely
capture the semantics of DIFFERENTIATE. However, we
can define a DIFFERENTIATE-like difference metric by
comparing explanation frequency in the outlier set to a back-
ground rate and finding sets of relational attributes for which
outliers occur significantly more often than they do in gen-
eral.

2.4 Practical considerations forDIFF

While our definition of DIFF is purposefully broad, we
observe that there are several practical considerations that
DIFF query users undertake to maximize the analytical value
of their queries. These practices are applicable to a broad
range of applications and real-world datasets, especially for
industrial workloads. Specifically, a typical DIFF query has
the following properties:

1. The query always uses support as one of its difference
metrics.

2. The maximum order of the query is k ≤ 3.
3. The query outputs the most concise explanations—i.e.,

each output tuple should be the minimal set of attribute
values that satisfy the difference metrics of the query.

The last property—which we refer to as minimality—is
included so that the DIFF query returns valuable results to
the user without overwhelming her with extraneous outputs.
Obeying this property can change the semantics of DIFF

and affect its generality (e.g., running DIFF with just sup-
port would no longer generalize to FIM, since FIM’s goal is
to find maximal itemsets [45]), and DIFF implementations
can provide a flag to enable or disable it for a given query.
If minimality is enabled, then there are two opportunities for
optimization:We can (i) terminate early and avoid evaluating
higher-order explanations when a lower-order subset already
satisfies the difference metrics and (ii) incrementally prune
the search space of candidate explanations as we compute

123

Abuzaid et al.

their difference metric scores, so long as the difference met-
ric is anti-monotonic.

In general, a difference metric with threshold θ is anti-
monotone if, whenever a set of attribute values A∗ fails to
exceed θ , so, too, will any superset ofA∗. The most common
example of an anti-monotonic difference metric is support:
The frequency ofA∗ in a table R will always be greater than
or equal to any superset of A∗.

When employing user-defined difference metrics, defin-
ing these metrics to also obey the anti-monotonicity property
is highly desirable. While any function (or set of func-
tions) can be supported as a difference metric (so long as
they obey its definition), an anti-monotone difference metric
enables the DIFF operator to prune candidate explanations
and substantially improve query performance. If an explana-
tion does not satisfy a user-defined anti-monotone difference
metric, then all possible supersets of that explanation can
also be discarded, thus reducing the search space of possible
explanations. We discuss this optimization in more detail in
Sect. 5.1.

2.5 Supporting continuous attributes

To support continuous attributes, the DIFF operator requires a
means of discretizing each continuous attribute into distinct,
non-overlapping ranges, effectively creating a set of cate-
gorical values to represent the continuous attribute. As with
difference metrics, the DIFF operator itself is not wedded to
any specific discretization strategy; instead, this choice is left
up to the user.

This design decision is motivated by the observation that
different continuous attributes will likely require different
discretization strategies. For example, one may choose equi-
width partitions for one attribute (as systems likeDBSherlock
do [68]) and equi-depth partitions for another (which are
more expensive to compute). For attributes that exhibit an
exponential distribution, one may choose to apply a log-
uniform discretization. The user can also tune the number
of discrete partitions for a given attribute, which can also
affect the resulting explanations found.

This raises an interesting question: When evaluating
explanation queries on datasets with continuous attributes,
does there exist a data-drivenmethod for determining the best
possible discretization strategy for each continuous attribute?
Further research is required to answer this question, and we
leave this to the reader as future work.

3 ANTI DIFF: a complement to DIFF

While the DIFF operator is helpful for finding explanations,
analysts may also be interested in finding data points that
are not covered by explanations. More precisely, for a test

relation R and control relation S, users may want to find
tuples r ∈ R whose attribute values A∗ do not appear in
Δ(R, S). To address this use case, we also introduce the ANTI
DIFF operator, which mirrors the DIFF SQL syntax defined

in Fig. 1. Intuitively, the ANTI DIFF operator is the inverse of
DIFF; that is, anANTI DIFF querywill return all explanations
that would not appear in the output of DIFF. More formally,
the k-order ANTI DIFF of R and S will return the set of
explanations with order k such that each explanationA∗ does
not satisfy at least one difference metric γ ∈ �.

Like DIFF, ANTI DIFF is also a relational operator, and it,
too, can be translated to SQL. In fact, any ANTI DIFF query
can be expressed as a DIFF query: The ANTI DIFF of test
relation R and control relation S is equivalent to the DIFF of
R and S subtracted from the CUBE of R over the dimensions
A.

This translation, however, is not an effective approach for
the implementation of ANTI DIFF, as computing the CUBE

can be costly for large datasets. In Sect. 4.2, we discuss how
to employ logical optimizations to efficiently evaluate ANTI

DIFF queries.

3.1 Example workflow and formal definition

While the DIFF operator can be used to find explanations for
unusual trends in large datasets, the ANTI DIFF operator, by
contrast, is helpful for finding features that correlate highly
with expected or “normal” trends. If the test relation R is
now treated instead as a “gold standard” set of features with
corresponding metrics, then the ANTI DIFF query aims to
answer the following question: Which other sets of features
in the data are also highly correlated with that gold standard?

Such queries are useful in a variety of scenarios, such
as time series analysis: Data analysts often wish to explain
trends that persist between different time windows, not just
those that differ. Another common use case for ANTI DIFF

is to find distinct feature sets that surprisingly exhibit high
similarity, which is especially valuable in cases when these
feature sets prove elusive to find during manual analyses.
Example workflow. To demonstrate how to construct and
utilize ANTI DIFF queries, an online content creator has pub-
lished many videos worldwide. Her videos are measured by
the impressions they collect, such as the time spent watch-
ing each video, and she keeps track of these analytics in the
following table:

video_id user_age user_gender user_country watch_time

gu75ku9 30-40 male Nigeria 0.23
...
gu75ku9 25-29 not shared Jordan 0.45
...
x6g8f4y 18-24 female Bolivia 1.0

123

DIFF: a relational interface for large-scale data explanation

(Note that the watch_time column indicates the fraction
of time spent watching—a value of 1.0 indicates that the user
watched the entire video.)

With these data, the content creator wants to gain a better
understanding of her viewership’s engagement. She recently
released a new video (video_id = "x6g8f4y"), and she
wants to track a core demographic, which represents her
primary audience: young adult women in Latin and South
America. She knows that, in her previous videos, engage-
ment was high among this cohort, and she wants to confirm
that this is still the case. Therefore, she runs the following
ANTI DIFF query:

SELECT * FROM
(SELECT * FROM view_data WHERE video = "

x6g8f4y") new_video
ANTI DIFF

(SELECT * FROM view_data WHERE video != "
x6g8f4y") old_videos

ON user_age , user_gender , user_country
COMPARE BY mean_shift(watch_time) >= 1.5,

support >= 0.1
MAX ORDER 3;

and receives the following output:

user_age user_gender user_country mean_shift support

18–24 – - 1.05 40%
– female – 1.15 55%
– – Bolivia 1.10 5%
...
18–24 female – 1.25 30%
...
18–24 female Bolivia 2.05 3%
...

Because she uses the ANTI DIFF, she receives any explana-
tion that did not satisfy at least one of the two difference met-
rics. Note the presence of the column {user_age="18-24",

user_gender="female", user_country="Bolivia"}:Although
its mean_shift is greater than 1.5, it is included in the output
due to its support not meeting the 10% threshold specified in
the query.

These results seem to confirm that her latest video was
once again popular among her target audience. But, to
double-check, she issues the same query but filters for all
3-order explanations (by adding a simple WHERE clause):

user_age user_gender user_country mean_shift support

18-24 female Bolivia 2.05 3%
18-24 female Costa Rica 1.05 8%
... 8%
24-29 female Argentina 1.15 6%

This result confirms that her latest video is once again per-
forming well across her target demographic. By using the

ANTI DIFF, the online content creator can track various
cohorts and examine their engagement levels with a single
query.

Definition 4 ANTI DIFF

We now define the ANTI DIFF operator, which we denote as
∇. Like DIFF, the ANTI DIFF operator takes the same inputs:
test and control relations R and S, a set of difference metrics
�, a set of dimensions A, and a maximum order k.
Algebraically, a ANTI DIFF query is expressed as follows:

∇�,A,k(R, S),

or ∇(R, S) for the sake of brevity.
Like DIFF, the ANTI DIFF operator applies the difference

metrics � to every possible explanation with order k or less
found in R and S; the explanations can only be derived from
A. The difference metrics are evaluated over every expla-
nation A∗—if the explanation does not satisfy any of the
difference metrics, it is included in the output of ANTI DIFF,
along with its values for each of the difference metrics.

4 Logical optimizations for DIFF

For many workloads, data analysts need to combine rela-
tional fact tables with dimension tables, which are stored in a
large data warehouse and organized using a snowflake or star
schema. Because the DIFF operator is defined over relational
data, we can design logical optimizations that take advan-
tage of this setting and co-optimize across other expensive
relational operators. These optimizations are not possible in
existing explanation engines, which do not provide an alge-
braic abstraction for explanation finding. In this section, we
discuss several logical optimizations:

1. a predicate-pushdown-based adaptive algorithm for eval-
uating DIFF in conjunction with JOINs;

2. an algorithm for ANTI DIFF that incrementally applies
difference metrics and prunes the search space of possible
explanations, thus obviating the need to evaluate the CUBE
of R;

3. a technique that leverages both hard and soft functional
dependencies to accelerate DIFF query evaluation when
possible;

4. a statistical predicate pushdown optimization for queries
combining the support and mean shift difference metrics,
based on variance decompositions; and

5. a technique to apply multi-query optimization for consec-
utive DIFF queries applied to the same input relations.

Throughout this section—along with the subsequent sec-
tion on physical optimizations—we focus on optimizations

123

Abuzaid et al.

for DIFF thatmake the assumptions in Sect. 2.4.Unless other-
wise stated, each optimization further assumes a DIFF query
with exactly two difference metrics: risk ratio and support.

4.1 DIFF–JOIN predicate pushdown

Suppose we have relations R, S, and T , with a common
attribute a. In T , a is a primary key column, and in R and
S, a is a foreign key column. T has additional columns T =
{t1, . . . , tn}.

A common query in this setting is to evaluate the DIFF on
R NATURAL JOIN T and S NATURAL JOIN T; we refer to
this as a DIFF–JOIN query. Here, T effectively augments the
space of features that the DIFF operator considers to include
T . This occurs frequently in real-world workflows: When
finding explanations, many analysts wish to augment their
datasets with additional metadata (e.g., hardware specifica-
tions, weather metadata) by executing primary key-foreign
key JOINs [39]. For example, a production engineer who
wants to explain a sudden increase in crash rate across a
cluster may want to augment the crash logs from each server
with its hardware specification and kernel version.

More formally, we wish to evaluate Δ�,A,k(R �	a
T , S �	a T), the k-order DIFF over R �	a T and S �	a
T . The naïve approach to evaluate this query would be
to first evaluate each JOIN and then subsequently evalu-
ate the DIFF on the two intermediate outputs. This can
be costly, however—the JOINs may be expensive to eval-
uate [1,52,54,65], potentially more expensive than DIFF.
Moreover, if the outputs of the JOINs contain few attribute
value combinations that satisfy the difference metrics, then
fully evaluating the JOINs becomes effectively a wasted step.

The challenge of efficiently evaluating DIFF in conjunc-
tion with one more JOINs is a specialized scenario of the
multi-operator query optimization problem: A small estima-
tion error in the size of one or more intermediate outputs can
transitively yield a very large estimation error for the cost
of the entire query plan [37]. This theoretical fact inspired
extensive work in adaptive query processing [21], including
systems such as Eddies [5] and RIO [7]. Here, we take a
similar approach and design an adaptive algorithm for eval-
uating the DIFF–JOIN that avoids the pitfalls of expensive
intermediate outputs.

Our adaptive algorithm is summarized in Algorithm 1.
We start by evaluating DIFF on the foreign key columns in R
and S (line 2), but without enforcing the support difference
metric.

Evaluating the DIFF on the foreign keys gives us a set
of candidate foreign keys K—these keys will map to can-
didate values in T . This is a form of predicate pushdown
applied using the risk ratio: Rather than JOIN all tuples in T
with R and S, we use the foreign keys to prune the tuples
that do not need to be considered for evaluating the DIFF

Algorithm 1 DIFF-JOIN Predicate Pushdown, support and
risk ratio
1: procedure DIFF- JOIN(R, S, T , k, A, θrr , θsupp)
2: K ← Δ�=θrr ,A,k(πa R, πa S) � DIFF, risk ratio only
3: if |K | > threshold then
4: return Δ�={θsupp,θrr},A,k(R �	 T , S �	 T)

5: V ← K � T
6: for t ∈ T do � each tuple
7: for ti ∈ t do � each value
8: if ti ∈ V and ti .pk /∈ K then
9: V ← V ∪ t

return Δ�={θsupp,θrr},A,k(R �	 V , S �	 V)

of R �	 T and S �	 T . We cannot apply the same predicate
pushdownusing support, sincemultiple foreign keys canmap
to the same attribute in T , allowing low-support foreign keys
to contribute to a high-support attribute. However, predicate
pushdown via the risk ratio is mathematically possible: Sup-
pose we have two foreign keys x and y, which both map to
the same value v in T . The risk ratio of v—denoted rr(v)—is
thus a weighted average of rr(x) and rr(y). This means that,
if rr(v) exceeds the threshold θrr, then either rr(x) or rr(y)
must also exceed θrr. Therefore, the risk ratio difference met-
ric can be applied on the column a, since at least one foreign
key for a corresponding value in T will always be found.

We continue by semi-joining K with T , which yields our
preliminary set of candidate values, V (line 5). However,
the semi-join does not give us the complete set of possible
candidates—because multiple foreign keys can map to the
same value, there may be additional tuples in T that should
be included in V . Thus, we loop over T again; if any attribute
value in a tuple t is already present in V , but t’s primary key
is not found in K , thenwe add t to V (lines 6-9).We conclude
by evaluating the DIFF on R �	 V and S �	 V .

The technique of pushing down the difference metrics to
the foreign keys does not always guarantee a speedup—only
when K is relatively small. Thus, on line 3, we compare
the size of K against a pre-determined threshold. (In our
experiments, we found that threshold = 5000 yielded the
best performance.) If |K | exceeds the threshold, thenweabort
the algorithm and evaluate the DIFF–JOIN query using the
naïve approach. As we show in our evaluation, this adaptive
strategy can yield up to 2× speedups on real-world queries
over normalized datasets.

4.2 ANTI DIFF pruning

As discussed in Sect. 3, the ANTI DIFF of relations R and
S can be translated into a CUBE(R) - DIFF(R, S). Such an
implementation, however, is potentially inefficient due to the
materialization costs of the CUBE subquery.

Instead, we can leverage a key design decision (which
we discuss in Sect. 5) in our implementation of the DIFF

operator. In MB SQL, DIFF uses the Apriori algorithm to

123

DIFF: a relational interface for large-scale data explanation

explore the space of explanations in a bottom-up manner—
Aprioriwill first examine single-attribute explanations before
exploring higher-order ones. This choice, combined with the
minimality property (discussed in Sect. 2.4), allows us to
prune higher-order explanations based on the anti-monotone
differencemetrics of oneormore of their lower-order subsets.
We exploit this strategy in our implementation of DIFF to
reduce query runtimes whenever possible.

This same insight can be applied when evaluating ANTI

DIFF queries as well; rather than prune a candidate expla-
nation when it fails to satisfy an anti-monotone difference
metric (the behavior when executing DIFF), in the case of
ANTI DIFF, we add it to the set of results to be returned.
Likewise, when a candidate explanation has satisfied all
of the difference metrics, we do the opposite of DIFF and
prune it from the search space of explanations. For candidate
explanations that are in neither case—they do not yet sat-
isfy all the difference metrics, but their supersets could—we
also include them in the output of ANTI DIFF. In totality,
this optimization effectively computes CUBE(R) - DIFF(R

, S) without materializing all possible explanations.1 In
Sect. 7.4.4, we show that our implementation of this tech-
nique provides a 2× speedup over CUBE(R) - DIFF(R, S)

for ANTI DIFF queries over each of the datasets in our eval-
uation.

4.3 Leveraging hard functional dependencies

As previously described, extensive data collection and aug-
mentation are commonplace in the monitoring and analytics
workloads we consider. Datasets are commonly augmented
with additional metadata, such as hardware specifications or
geographic information, that can yield richer explanations.
This, however, can lead to redundancies or dependencies in
the data. In this section, we focus specifically on how func-
tional dependencies can be used to optimize DIFF queries.

Given a relation R, a set of attributes X ⊆ R functionally
determines another set Y ⊆ R if Y is a function of X . In
other words, X functionally determines Y if knowing that
a row contains some attribute x ∈ X means the row must
also contain another particular attribute y ∈ Y . This rela-
tionship is referred to as a hard functional dependency (FD)
and is denoted as X → Y . Examples of commonly found
FDs include location-based FDs (Zip Code→City) and FDs
arising from user-defined functions or derived features (Raw
Temperature → Discretized Temperature). As the output of
the DIFF operator is a set of user-facing explanations, return-
ing results which contain multiple functionally dependent
attributes is both computationally inefficient and distracting

1 To keep ANTI DIFF consistent with CUBE(R) - DIFF(R, S),
we also prune all explanations with no support in R.

to the end user. Thus, we present a logical optimization that
leverages FDs.

There are two classes of functional dependencies which
we optimize differently; an example of each is shown in the
following tables:

Device Zip Code City

iPhone 94016 SF
- 94119 SF
Galaxy S9 94134 SF

Device Country ISO Code

iPhone France –
iPhone – FR
Galaxy S9 India –
Galaxy S9 – IN

In the first class, we have attributes X Y where X → Y
but not Y → X . For example, zip code functionally deter-
mines city, but the reverse is not true. If we ignore this sort
of functional dependency, we may end up with uninteresting
results like those in the top table. These results are redundant
within each explanation: the City column is redundant with
the Zip Code column. We know that if iPhone-94016
is an explanation, iPhone-94016-SF is as well. Like-
wise, if iPhone-94016 is not an explanation, then
iPhone-94016-SF must not be either. Therefore, the
DIFF operator should not consider these combinations of
columns.

In the second class of functional dependencies, there exist
attributes X and Y where both X → Y and Y → X . This
means that X and Y are perfectly redundant with one another.
For instance, in the second table, Country → ISO Code, and
ISOCode→Country.Naïvely runningDIFF over this dataset
may return results as in the bottom table.

Here, the results are redundant across different explana-
tions. Given the first and third explanations, we can derive
the second and fourth, and vice versa. We do not need to run
DIFF over both Country and ISO Code, because they provide
identical information.

Depending on what types of functional dependencies are
observed, the DIFF operator employs the following logical
optimizations: (i) If X → Y , do not consider or evaluate
explanations containing both X and Y ; (ii) X → Y and
Y → X , do not evaluate or consider explanations containing
X . (Or alternatively, do not evaluate or consider explanations
containing Y .) We evaluate the runtime speedups provided
by each of these optimizations in our evaluation.

123

Abuzaid et al.

4.4 Leveraging soft functional dependencies

We described two classes of hard functional dependencies
and how they can be used to improve performance. In this
section, we consider "soft" functional dependencies, which
can also be used in a manner similar to hard FDs.

Soft functional dependencies are a generalization of the
hard functional dependencies described in Sect. 4.3 [36].
Given a relation R, and two sets of attributes X ,Y ⊆ R, we
denoted a hard FD as X → Y if X functionally determines
Y—that is, if the value of X determines the value of Y . On
the other hand, in a soft FD, X only determines the value of Y
with high likelihood. For instance, in the following example,
the City column is a soft FDwith the Country column.While
Amsterdam refers to the capital of the Netherlands with high
probability, it may also refer to the city in New York.

Device Country City

iPhone USA Amsterdam
- Netherlands Amsterdam
Galaxy S9 Netherlands Amsterdam

Unlike with hard FDs, omitting the Country column in
returned explanations may not be desired. However, we have
encountered scenarios in which soft FDs can be treated sim-
ilar to hard FDs, allowing the same optimizations to be
applied. In particular, this occurs in the presence of noisy or
erroneous data collection or random jitter induced in device
measurements. Thus, we allow the user to specify when soft
FDs should be treated the same as hard FDs. We quantify the
performance improvement gained by allowing for soft FDs
in Sect. 7.4.5.

4.5 Automatic FD detection

Thus far, we assumed FDs are provided in advance by the
user. In this section, we describe how to efficiently identify
FDs in datasets automatically.

To automatically detect functional dependencies, we use a
portion of the CORDS algorithm [36]. Automatically identi-
fying hard FDs can be performed by counting the cardinality
of each column. If |X | = |X ,Y |, then X functionally deter-
mines Y . If |X | is close to |X ,Y |, then we can denote this as
being a soft FD relationship. More formally, a soft FD can be
quantified by its strength, |X |

|X ,Y | , where a strength of 1 indi-
cates a hard FD. In addition to FDs, CORDS also computes
the statistical correlation between columns via Chi-squared
test. The strength of the FDs and correlations to be used by
DIFF is a user-specified parameter.

As computing these values can be computationally expen-
sive, CORDS instead uses data samples to approximate the

strength of the FDs and correlations. [36] shows that a fixed
size data sample is sufficient to capture these relationships,
thus allowing the method to scale to large datasets (as we
demonstrate in Sect. 7.4.5).

4.6 Variance pruning

As discussed earlier in Sect. 4.2, the choice of Apriori allows
us to evaluate and apply difference metrics to explanations
as the search space is being explored; thus, pruning candi-
date higher-order explanations allows us to apply statistical
predicate pushdown techniques for specific differencemetric
combinations.

For example, for DIFF queries withmean shift and support
difference metrics, we can use metric variance to filter out
potential explanations and reduce query runtimes. Intuitively,
if an explanation matches a set of records whose current
means and variance make it impossible for any subset to
exceed both the support and mean shift thresholds, then we
can proactively avoid considering any higher-order exten-
sions of this explanation.

The mean shift is given by

γms = mean(RA∗)/mean(SA∗)

for records in the test relation R and control relation S that
match an explanation with attributes A∗ (i.e., RA∗ is short-
hand for σA∗(R)).

This means that if one can bound both mean(RX∗) and
mean(SX∗) for X∗, a higher-order extension ofA∗ (i.e., X∗ ⊇
A∗), then one can avoid searching over any X∗ that could not
possibly exceed a given mean shift threshold.

By tracking the variance in addition to the mean, one can
bound the total variance of records matching an explanation
using a variance decomposition. Let RA∗ denote a random
variable corresponding to sampling a metric x uniformly
from A∗, and let RX∗ denote the event that x ∈ RX∗ . Con-
sider the variance of a metric Var(RA∗); using a classical
decomposition, we can bound the variance by conditioning
on the event that a randomly sampled metric x lies in RX∗ :

Var(RA∗) = E[Var(RA∗ |RX∗)] + Var[E[RA∗ |RX∗]]
≥ Var[E[RA∗ |RX∗]]

Now, note that E[RA∗ |RX∗] is a random variable equal to
either

1. mean(RX∗), with probability
count(RX∗)

count(RA∗)

2. or mean(RA∗\RX∗), with probability 1 − count(RX∗)

count(RA∗)

123

DIFF: a relational interface for large-scale data explanation

and with expected value mean(RA∗). Thus, we have that

(mean(RX∗) − mean(RA∗))
2 · count(RX∗)

count(RA∗)
≤ Var(RA∗)

Given a support threshold θs , we know that count(RX∗)

count(R)
≥

θs for any explanation with valid support. We can combine
these two inequalities to derive upper and lower bounds on
mean(RX∗), mean(SX∗), and γms(X∗), thereby enabling us
to prune any superset of of the explanation A∗ that does not
meet the mean shift threshold.

In our implementation, we therefore must compute an
additional aggregation function to calculate the variance
Var(RX∗) over various explanations. This can be done
cheaply by aggregating the sum of squares of values in a
dataset and using the identity

Var(RX∗) =
⎛

⎝
1

|RX∗ |
∑

y∈RX∗

y2

⎞

⎠ − mean(RX∗)
2.

In practice, we found that the speedup from additional
pruning outweighs the cost of evaluating the variance and
checking these inequalities.

4.7 Multi-query optimization

DIFF users often wish to query the same dataset with sev-
eral different difference metric thresholds. For example, if a
developer is using DIFF with support and risk ratio as met-
rics, they may wish to query with high support and low risk
ratio thresholds and then again with low support and high
risk ratio thresholds, to determine how to best tune these
metrics to discover the most interesting insights about their
data. DIFF supports such query patterns with its multi-query
optimization, which maximizes the performance of multiple
queries run sequentially.

DIFF’smulti-query optimization assumes a user is sequen-
tially running a set of queries on the same dataset with the
samedifferencemetrics but different thresholds. Itminimizes
the time spent running the queries. To do this, it constructs a
single super-query whose output is a superset of the union of
the outputs of the original queries. DIFF then runs each of the
original queries as a filter over the output of the super-query.

We will now explain how to construct the super-query.
Assume a user wishes to run k sequential DIFF queries.
The queries all share the same m anti-monotonic difference
metrics with thresholds θa1 . . . θam and the same n non-anti-
monotonic difference metrics with thresholds θ1 . . . θn . The
super-querymust choose values of each θa and θ tomaximize
performancewhile still returning all explanations returned by
any of the original queries.

For each anti-monotonic difference metric, the super-
query will use the smallest of the original query thresholds:
mini θai . This is because DIFF prunes candidate explanations
using the anti-monotonicity of these differencemetrics, prun-
ing a candidate explanation and all its supersets if it scores
below the threshold of any anti-monotonic difference metric.
Any candidate explanation that cannot pass the smallest of
the original thresholds would not have been returned by any
of the original queries.

Handling non-anti-monotonic difference metrics is more
complicated because DIFF prunes via minimality, pruning
all supersets of a candidate explanation that passes all differ-
ence metric thresholds. However, if a candidate explanation
fails to pass the threshold of a non-anti-monotonic difference
metric, oneof its supersetsmay still pass the threshold.There-
fore, if the super-query used minimal query thresholds for
non-anti-monotonic difference metrics, it may prune higher-
order candidate explanations that were part of the outputs of
original queries with higher thresholds on those difference
metrics. To get around this, the super-querymodifies themin-
imality rule to only prune supersets of candidate explanations
that score above the largest of the original query thresholds
for non-anti-monotonic difference metrics.

The output of the super-query is a superset of union of the
outputs of the original queries. Therefore, to answer one of
the original queries,DIFFfilters the super-query’s outputwith
the original query’s difference metrics. This is guaranteed to
return the same result as the original query. As we show in
Sect. 7, the multi-query optimization improves performance
by up to 3× when running four queries sequentially.

5 Physical optimizations for DIFF

In this section, we discuss the core algorithm underlying
DIFF, a generalization of the Apriori algorithm [2] from
the Frequent Itemset Mining (FIM) literature. Based on the
assumptions from Sect. 2.4, we apply several physical opti-
mizations, including novel techniques that exploit specific
properties of our datasets and relational model to deliver
speedups of up to 17×.

5.1 Algorithms

The DIFF operator uses the Apriori itemset mining algo-
rithm [2] as its core subroutine for finding explanations (i.e.,
itemsets of attributes). Apriori was developed to efficiently
find all itemsets in a dataset that exceed a support thresh-
old. We chose Apriori instead of other alternatives, such as
FPGrowth, because it is simple and perfectly parallel,making
it easy to distribute and scale.

OurApriori implementation is a generalization of the orig-
inal Apriori introduced in [2]. We build a map from itemsets

123

Abuzaid et al.

of attributes to sets of aggregates. For each explanation order
k, we iterate through all itemsets of attributes of size k in all
rows of the dataset. Upon encountering an itemset, we check
whether all subsets of order k−1 pass all anti-monotonic dif-
ference metrics. If they did, we update each of its aggregates.
After iterating through all rows and itemsets for a particular
k, we evaluate all difference metrics on the sets of aggregates
associated with itemsets of size k. If an itemset passes all dif-
ference metrics, we return it to the user. If it only passes the
anti-monotonic difference metrics, we consider the itemset
during the subsequent k + 1 pass over the data. However, if
it fails any of the anti-monotonic difference metrics, we can
prune the itemset from further consideration in high orders.

While Apriori gives us a scalable algorithm to find
explanations, it performs poorly when applied naïvely to
high-dimensional, relational data of varying cardinalities. In
particular, themany reads andwrites to the itemset-aggregate
map become a bottleneck at large scales.We now discuss our
optimizations that address performance.

5.2 Packed integers and column ordering

To improve the performance of the itemset-aggregate map
at query time, we encode on the fly each unique value in
the dataset whose frequency exceeds the support threshold
as a 21-bit integer. This is done by building a frequency map
per column and then discarding entries from each map that
do not meet the support threshold. With this encoding, all
explanations can be represented using a single 64-bit integer,
for k up to and including 3. This allows us to index our map
with single packed integers instead of with arrays of integers,
improving overall runtimes by up to 1.7×. This optimization
is possible because the total number of unique values in our
datasets never exceeds 221 even with a support threshold of
0. If the total number of unique values does exceed 221, we
do not perform this optimization and instead store itemsets
as arrays of integers.

To improve the map’s read performance, we borrow from
prior research [44,63] and use a columnar storage format for
our data layout strategy. Becausemost reads are for a handful
of high-frequency itemsets, this improves cache performance
by avoiding cache misses on those itemsets, improving run-
times by up to 1.9×.

5.3 Bitmaps

We can further optimize DIFF by leveraging bitmap indexes,
a strategy used in MAFIA [15] and other optimized Apriori
implementations [6,26,70].We encode each column as a col-
lection of bitmaps, one for each unique value in the column.
Each bitmap’s i th bit is 1 if the column contained the value
in its i th position and 0 otherwise. To compute the frequency

Fig. 2 Bitmap versus non-bitmap performance mining 3-order item-
sets. Left: all columns share same cardinality. Right: two columns have
fixed cardinality and the third varies

of an itemset, we count the number of ones in the bitwise
AND of the bitmaps corresponding to the itemset.

However, the cost of using bitmaps—both compressed
(e.g., Roaring Bitmaps [16]) and uncompressed—in the
context of Apriori can be prohibitive for high-cardinality
datasets, which prior work does not consider. While each
individual AND is fast, the number of potential bitmaps is
proportional to the number of distinct values in the dataset.
Additionally, the number of AND operations is proportional
to

(n
3

)
, where n is the number of distinct elements in a given

column. This trade-off between intersection speed and num-
ber of operations is true for compressed bitmaps as well:
ANDs are faster with Roaring Bitmaps only when the bitmaps
are sufficiently sparse, which only holds true for very large
n. In our evaluation, we find that using bitmaps for the CMS
dataset with support 0.001would require computing over 4M
ANDs of bitmaps with 15M bits each.

To combat these issues, we develop a per-column cost
model to determine whether bitmaps speed up processing
prior to mining itemsets from a set of columns. This is pos-
sible because our data originate in relational tables, so we
know the cardinality of our columns in advance. The runtime
of DIFF without bitmaps on a set of columns is independent
of column cardinalities. However, the runtime of DIFF with
bitmaps is proportional to the product of the cardinalities of
each column. We demonstrate this in Fig. 2. On the left, we
run DIFF on three synthetic columns with varying cardinal-
ity and find that bitmap runtime increases with the product
of the cardinalities of the three columns, while non-bitmap
runtime does not change. On the right, we fix the cardinali-
ties of two columns and vary the third and find that bitmap
runtime increases linearly with the varied cardinality, while
non-bitmap runtime again does not change.

Given these characteristics of the runtime, a simple cost
model presents itself naturally. Given a set of columns of
cardinalities c1...cN , we should mine itemsets from those
columns using bitmaps if the product c1 ∗ c2... ∗ cN < r .
Here, r is a parameter derived empirically from experiments
similar to those in Fig. 2. It is the ratio tnb

tb/(c1∗c2...c∗N)
where

tnb and tb are runtimes mining itemsets of order N from N
columns with cardinalities c1...cN . We find that for a given

123

DIFF: a relational interface for large-scale data explanation

machine, r does not change significantly between datasets.
Overall, we show in our evaluation that this selective use of
bitmap indexes improves performance by up to 5×.

6 Implementation

To implement the DIFF and ANTI DIFF operators, we
develop both single-node and distributed implementations
(in Apache Spark) of our relational query engine, the latter of
which is implemented in Apache Spark.2 In this section, we
focus on the distributed setting and describe howwe integrate
our operators in Spark SQL [4]. We evaluate the distributed
scalability of DIFF in our evaluation.

6.1 MB SQL in Spark

For our distributed implementation, we integrate MB SQL
with Spark SQL, which provides a reliable and optimized
implementation of all standard SQL operators and stores
structured data as relational DataFrames. We extend the
Catalyst query optimizer—which allows developers to spec-
ify custom rule-based optimizations—to support our logical
optimizations. For standard SQL queries, MB SQL defers
execution to standard Spark SQL and Catalyst optimiza-
tions, while all MacroBase-specific queries, including the
DIFF operator, are (i) optimized using our custom Catalyst
rules and (ii) translated to equivalent Spark operators (e.g.,
map, filter, reduce, groupBy) that execute our optimized
Apriori algorithm. In total, integrating the DIFF operatorwith
Spark SQL requires ~1600 lines of Java code.

Pruning optimization for distributed setting A major bot-
tleneck in the distributed Apriori algorithm is the reduce
stage when merging per-node itemset-aggregate maps. Each
node’s map contains the number of occurrences for every
single itemset, which can grow exponentially with order.
Therefore, naïvely merging these maps across nodes can
incur significant communication costs. For example, for
MS-Telemetry A, the reduction of the itemset-aggregate
maps is typically an order of magnitude more expensive than
other stages of the computation.

To overcome this bottleneck, we prune each map locally
before reducing, using the anti-monotonic pruning rules
introduced in Sect. 2.4. Naïvely applying our pruning rules
to each local map may incorrectly remove entries that satisfy
the pruning rules on one node but not another. Therefore, we
use a two-pass approach: In the first pass, we prune the local
entries but preserve a copy of the original map. We reduce
the keys of the pruned map into a set of all entries that pass

2 Our implementation is open source and available at https://github.
com/stanford-futuredata/macrobase.

our pruning rules on any node. Then, in the second pass, we
use this set to prune the original maps and finally combine
the pruned originals to get our result.

7 Evaluation

In this section, we evaluate our implementation of the
DIFF and ANTI DIFF operators on a variety of datasets,
queries, and settings. We show that both our single-node
and distributed implementations can efficiently scale to large
datasets, and we demonstrate that our logical and physical
optimizations substantially improve query performance.

7.1 Experimental setup

Single-node benchmarks were run on an Intel Xeon E5-2690
v4 CPU with 512 GB of memory. Distributed benchmarks
were run on Spark v2.2.1 using a GCP cluster comprised of
n1-highmem-4 instances, with each worker equipped with
4 vCPUs from a 2.2GHz Intel E5 v4 (Broadwell) processor
and 26 GB of memory.

7.2 Datasets

We benchmark the DIFF operator on the real-world datasets
summarized in Tables 2 and 3. Unless otherwise specified, all
queries are executed over all columns in the dataset and use as
difference metrics support with a threshold of 0.01, risk ratio
with a threshold of 2.0, and MAX ORDER 3. We measure and
report the end-to-end query runtime, which includes the time
to apply our integer packing, column ordering, and bitmap
optimizations.

Telemetry atMicrosoft WithMicrosoft’s permission,weuse
two of their private datasets: MS-Telemetry A (60 GB,
175M rows, 13 columns) and MS-Telemetry B (26 GB,
37M rows, 15 columns). These consist of application teleme-
try data collected from their internal dashboarding system.
In our benchmarks, we evaluateMicrosoft’s production DIFF

queries on both datasets.

Censys Internet port scans We requested and obtained data
from Censys, an Internet security research project that has
now been commercialized [23]. Censys data are widely used
in the Internet security research community and are freely
accessible to researchers via a handshake agreement.3 The
dataset (75 GB, 400M rows, 17 columns) consists of port
scans across the Internet from two separate days, 3 months
apart, where each record represents a distinct IP address.

3 https://support.censys.io/hc/en-us/articles/360038761891-
Research-Access-to-Censys-Data.

123

https://github.com/stanford-futuredata/macrobase
https://github.com/stanford-futuredata/macrobase
https://support.censys.io/hc/en-us/articles/360038761891-Research-Access-to-Censys-Data
https://support.censys.io/hc/en-us/articles/360038761891-Research-Access-to-Censys-Data

Abuzaid et al.

Fig. 3 Runtime comparison of MB SQL performance on DIFF queries with various difference metrics against the equivalent query in other
explanation engines. Unless denoted with an asterisk, all queries were executed with MAX ORDER 3. >24 h indicates that the query did not
complete in 24 h

For our single-node experiments, we generate two smaller
versions of this dataset: Censys A (3.6 GB, 20M rows, 17
columns) and Censys B (2.6 GB, 8M rows, 102 columns).
In our benchmarks, we evaluate DIFF queries comparing the
port scans across the 2 days.

Center for Medicare Studies (CMS): The 7.7 GB (15M row)
Center for Medicare Studies dataset, which is publicly avail-
able,4, lists registered paymentsmade by pharmaceutical and
biotech companies to doctors. In our benchmarks, we eval-
uate a DIFF query comparing changes in payments made
between 2 years (2013 and 2015).

We also benchmarked the scalability of the DIFF operator
on a day’s worth of anonymous scrolling performance data
from a single table used by a production service at Facebook.
In our benchmarks, we evaluate a DIFF query comparing
the top 0.1% (p999) of events for a target metric against
the remaining 99.9%. To simulate a production environment,
we ran our benchmarks on a cluster located in a Facebook
datacenter. Each worker in the cluster was equipped with 56
vCores, 228-GB RAM, and a 10 Gbps Ethernet connection.

7.3 End-to-end benchmarks

In this section, we evaluate the end-to-end performance of
DIFF. We compare DIFF’s performance to other explanation
engines as well as to other related systems such as frequent
itemset miners, finding that performance is at worst equiv-
alent and up to 9× faster on queries they support. We then
evaluate distributed DIFF’s and find that it scales to hundreds
of millions of rows of data and hundreds of cores.

7.3.1 Generality

In this section, we benchmark DIFF against the core sub-
routines of three other explanation engines: DataX-Ray [64],

4 https://www.cms.gov/OpenPayments/Explore-the-Data/Data-
Overview.html.

RSExplain [56], and the original MacroBase [8], match-
ing their semantics using DIFF as described in Sect. 2.
We also compare DIFF against Apriori and FPGrowth from
SPMF [27] aswell as SQL-equivalentDIFF queries described
in Sect. 2.2 on Postgres. Results are shown in Fig. 3. All
queries were executed with MAX ORDER 3 except for the
Postgres query onCensysB (denotedwith an asterisk),which
we ran with ORDER 2 due to Postgres’s limit on the number
of GROUP BY columns.

Original MacroBase We first compare the performance
of DIFF to that of the original MacroBase implementa-
tion [8]. We used support and risk ratio and measured
end-to-end runtimes. We found that DIFF ranged from
1.6× faster on MS-Telemetry A to around 6× faster
on MS-Telemetry B and Censys A than original Mac-
roBase. In themuch larger Censys-B dataset,DIFFfinished
in 4.5 h, while MacroBase could not finish in 24 h. The
differences in performance here come fromour physical opti-
mizations.

Data X-Ray To compare against Data X-Ray, we create a
differencemetric from aData X-ray cost metric, disablemin-
imality, and feed the DIFF results into Data X-Ray’s own
set-cover algorithm taken from their implementation.5 We
benchmark Data X-Ray on MS-Telemetry B because it
is our only dataset supporting a query—explaining system-
atic failures—that fits Data X-Ray’s intended use cases. We
attempted to run the benchmark on the entire dataset; how-
ever, we repeatedly encountered OutOfMemory errors from
Data X-Ray’s set-cover algorithm during our experiments.
Therefore, we report the experimental results on a subset
of MS-Telemetry B (1M rows). We do not observe any
speedup, as the runtime of the set-cover solver dominated the
overall runtime; with DIFF, we obtain effectively matching
results. (Our performance is 2% worse.)

5 https://bitbucket.org/xlwang/dataxray-source-code.

123

https://www.cms.gov/OpenPayments/Explore-the-Data/Data-Overview.html
https://www.cms.gov/OpenPayments/Explore-the-Data/Data-Overview.html
https://bitbucket.org/xlwang/dataxray-source-code

DIFF: a relational interface for large-scale data explanation

Table 2 Datasets used for our
single-node benchmarks

Dataset File size (CSV) (GB) # rows # columns # 3-order combos

Censys A 3.6 20M 17 19.5M

Censys B 2.6 8M 102 814.9M

CMS 7.7 15M 16 63.8M

MS-telemetry A 17 50M 13 73.4M

MS-telemetry B 13 19M 15 1.3B

Table 3 Datasets used for our
distributed benchmarks

Dataset File size (CSV) (GB) # rows # columns # 3-order combos

Censys 75 400M 17 38M

MS-telemetry A 60 175M 13 132M

RSExplain To compare against RSExplain, we implement
RSExplain’s intervention metric as a difference metric and
disable minimality. To compute a numerical query subject to
the constraints described in Sect. 4.1 of the original paper, we
calculate results for each individual query separately and then
combine them per explanation. We evaluate the performance
of this in queries on our single-node datasets, comparing the
ratio of events in the later time period versus the earlier in
Censys A andCMS, the ratio of high-latency to low-latency
events in MS-Telemetry A, and the ratio of successful
to total events in MS-Telemetry B. To reduce runtimes,
we remove a handful (≤ 2) of columns with large numbers
of unique values from each dataset. We found that the DIFF

implementation was consistently between 8× and 10× faster
at calculating intervention than the originally described algo-
rithm.

Frequent Itemset Mining Though DIFF is semantically
more general than Frequent Itemset Mining, we compare
DIFF’s performance with popular FIM implementations.
Specifically, we compare the runtime of the summariza-
tion step of DIFF to the runtimes of the Apriori and
FPGrowth implementations in the popular Java data min-
ing library SPMF[27]. When we run DIFF with only one
difference metric, support, and disable the minimality prop-
erty, DIFF is semantically equivalent to a frequent itemset
miner. DIFF ranges from 11× faster on Censys A to
36× faster on MB-Telemetry-B than SPMF Apriori and
from 1.1× faster on MS-Telemetry A to 3× faster on
MS-Telemetry B and Censys A than SPMFFPGrowth
at Frequent Itemset Mining. These speedups are due to the
physical optimizations we discuss in Sect. 5.

Postgres We benchmark DIFF against a semantically equiv-
alent SQL query in Postgres v10.3. We translate the support
and risk ratio to Postgres UDFs and benchmark DIFF queries
on the CMS and Censys A datasets. We find that DIFF is
orders of magnitude faster than the equivalent SQL query.

Fig. 4 Distributed scalability analysis ofMBSQL in Spark. On a public
GCP cluster, we evaluate a DIFF query with support of 0.001 and
risk ratio of 2.0 on Censys. We observe a near-linear scale-up as we
increase the number of servers

7.3.2 Distributed

We evaluate the scalability and performance of our dis-
tributed implementation of DIFF, described in Sect. 6, on
our largest datasets.

Censys In Fig. 4, we run a DIFF using support and risk ratio
onour largest public dataset, 400million rowsofCensys data,
on a varying number of 4-core nodes. This query compares
two Internet port scans (200M rows each) made 3 months
apart to analyze how the Internet has changed in that time
period. We find that this query scales well with increasing
cluster sizes.

Facebook Tomeasure the performance of MB SQL on even
larger datasets, we ran a similar scalability experiment on a
day’s worth of anonymous scrolling performance data from
a service at Facebook using one of their production clusters.
Workers in the cluster are not reserved for individual Spark
jobs, but are instead allocated as containers using a resource
manager. We therefore benchmark the DIFF query for this
service at the granularity of a Spark executor. Each executor
receives 32 GB of RAM and four cores.

At 50 executors, MB SQL in Spark evaluated our DIFF

query in approximately 2000 s. With fewer executors allo-
cated, MB SQL’s performance was slowed by significant
memory pressure: More than 10% of the overall compute

123

Abuzaid et al.

Fig. 5 Factor analysis of our optimizations, conducted on a single machine and core. We successively add all optimizations (PI: packed integers,
CO: column ordered, FDs: functional dependencies) discussed in Sects. 4 and 5

time was spent on garbage collection, since the data itself
took a significant fraction of the allocated memory. At 300
executors, which relieved the memory pressure, MB SQL in
Spark evaluated the query in 1000 s.

7.4 Analysis of optimizations

In this section, we analyze the effectiveness of our physical
and logical optimizations. We show that they improve query
performance by up to 17× on a single node and 7× in a
cluster.

7.4.1 Single-node factor analysis

We conduct a factor analysis to evaluate the effectiveness of
our proposedphysical optimizations (Sect. 5),with the results
shown in Fig. 5. Our efficient encoding scheme (Packed
Integers) and layout scheme (Column Ordered) pro-
duce substantial gains in performance, improving it by up
to 1.7× and 1.9×, respectively. Applying bitmaps to all
columns (All Bitmaps) improves performance by up
to 5× on datasets with low-cardinality columns, such as
Censys A with a high-support threshold, but performs
poorlywhen columnshavehigh cardinalities. Todecidewhen
bitmaps are appropriate, we use the cost model in Sect. 5
(Bitmap w/ Cost Model), which produces speedups
on all datasets and queries.

We also evaluate the performance of our functional depen-
dency optimization described in Sect. 4 (FDs) and find that
it produces speedups of up to 1.2× in all datasets except
Censys A and Censys B, which had no FDs. As previ-
ously discussed, we achieve these speedups by leveraging
the functional dependencies to prune redundant explana-
tions: For the CMS dataset, 14.5% of the explanations were
pruned; for MS-Telemetry-A, 26.7% were pruned; and
for MS-Telemetry-B, 5.4% were pruned. In total, our
optimized implementation is 2.5–17× faster than our unop-
timized implementation.

7.4.2 Distributed factor analysis

In Fig. 6, we conduct a factor analysis to study the effects of
our optimizations in the distributed setting. Because, to our

Fig. 6 Factor analysis of distributed optimizations, conducted on 25
four-core machines. We successively add all optimizations (DP: dis-
tributed pruning, PI: packed integers, FDs: functional dependencies)
discussed in Sects. 4, 5, and 6 and report corresponding throughput

knowledge, no other explanation engines have open-source
distributed implementations to compare to, we benchmark
against a popular distributed frequent itemset miner, the
parallel FPGrowth algorithm first described in [46] and
implemented as part of Spark’s MLlib library. We run our
experiments on all 400 million rows of Censys on a cluster
of 25 four-core machines and report throughput.

We find that MB SQL’s DIFF consistently outperforms
Spark’s FPGrowth by 2.5× to 4.5×. Even unoptimized
DIFF outperforms Spark FPGrowth, because our benchmark
DIFF queries return low-order explanations (k ≤ 3), while
FPGrowth is designed for finding higher-order explanations
common in Frequent Itemset Mining. Analyzing the opti-
mizations individually, we find that our efficient encoding
and bitmap schemes produce similar speedups as on a single
core. FDs produce a 10% speedup on MS-Telemetry A.
(No functional dependencies were found in Censys.) Our
distributed pruning optimization produces speedups of up to
6× on datasets with high-cardinality columns.

7.4.3 DIFF–JOIN

In this section, we evaluate the performance of our DIFF
–JOIN logical optimization. First, we apply the DIFF–JOIN
predicate pushdown algorithm on a normalized version of
MS-Telemetry B that requires a NATURAL JOIN between
two fact tables R and S and a single dimension table T . We
benchmark our optimization against the naïve approach and
find that it improves the query response time by 2×.

123

DIFF: a relational interface for large-scale data explanation

Fig. 7 Runtimeof theDIFF–JOINpredicate pushdownalgorithmwith
threshold disabled versus the naïve approach as |K | is varied. |R| =
|S| = 1M rows, and |T | = 100K rows with 4 columns. The DIFF query
is run with risk ratio = 10.0 and support = 10−4

In Fig. 7, we conduct a synthetic experiment to illus-
trate the relationship between |K |, the number of candidate
foreign keys, and our DIFF–JOIN optimization. We set |R|
and |S| to be 1M rows and |T | to be 100K rows with four
attributes. In R, we set a subset of foreign keys to occur with
a relative frequency compared to S, ensuring that this subset
becomes K . Then, we measure the runtime of both our algo-
rithm and the naïve approach on a DIFF query with risk ratio
and support thresholds of 10.0 and 10−4, respectively.

At |K |=5000, the runtimes of both are roughly equivalent,
confirming our setting of threshold. As |K | increases, we
find that the runtime of the DIFF–JOIN predicate pushdown
algorithm increases as well—a larger |K | leads to a larger V ,
the set of candidate values, which, in turn, leads to a more
expensive JOIN between R and V , and S and V . For the naïve
approach, a larger K leads to shorter overall runtime due to
less time spent in the Apriori stage. The larger set of candi-
date keys leads to many single-order and fewer higher-order
attribute combinations, and the Apriori algorithm spends less
time exploring higher-order itemsets.

7.4.4 ANTI DIFF

Todemonstrate the effectiveness of our inverted pruning rules
for ANTI DIFF, we take each of the Risk Ratio + Support
DIFF queries from Fig. 3 and benchmark their ANTI DIFF

equivalents on all six datasets. For each dataset, we execute
the ANTI DIFF operator using two approaches: (i) ANTI

DIFF(R, S) = CUBE(R) - DIFF(R, S) and (ii) using the
pruning optimizations described in Sect. 4.2. Figure 8 shows
the observed query throughput for both implementations.
Across the board, we see that our pruning technique achieves
1.9-2.2× speedups compared to CUBE(R) - DIFF(R, S).
While the runtimes of DIFF and ANTI DIFF are compara-
ble, the CUBE subquery adds additional overhead, making it
uncompetitive against our optimized approach. (Note that the
execution of CUBE also uses the same bitmap-based optimiza-
tions used by DIFF, thus substantially reducing its potential
overhead.)

7.4.5 Functional dependencies

To evaluate the performance improvement from including
soft FDs and automatic FD detection, we construct synthetic
datasets consisting of several FDs of varying strength. All
datasets consist of a binary metric column to separate the
two populations to run against DIFF and 40 attribute columns
for explanation. All columns for each dataset are constructed
the same way, with the datasets consisting of 1M, 10M, and
100M rows. Five columns are constructed to return expla-
nations (correlated with the metric column). Ten columns
are not correlated with the metric column and thus will not
appear in explanations. The remainder are columns that are
FDs between one of the five explanation columns, at varying
levels of strength. These FD columns are created such that
they will be recovered by running a method for automatic
FD detection, as described in Sect. 4.5, at varying strength
threshold values.

In Fig. 9, we compare the runtime of DIFF with and with-
out FDs. We display the runtime of DIFF run over the 10M
datapoint dataset as we vary the soft FD detection threshold.
The choice of detection threshold is decreased in order to
successively recover the FDs of varying strength constructed
as described above.Wefind that once the threshold is reduced

Fig. 8 Throughput comparison between the naïve implementation ofANTI DIFF (CUBE(R, S) -DIFF(R)) and our optimized implementation,
which leverages the inverted set of pruning rules. Results averaged over five separate trials

123

Abuzaid et al.

Fig. 9 Runtime improvements from using soft functional dependen-
cies. As the FD strength threshold is lowered to capture more FDs, the
overall DIFF runtime decreases

Fig. 10 Variance pruning significantly improves mean shift query per-
formance on datasets with low variance, while providing much smaller
improvements on datasets with high variance

to identify all induced FDs, we obtain up to a 1.1× speedup,
corresponding to a 5.6-min decrease in wall-clock runtime.

As the FD detection algorithm operates on data samples,
we also verify that the runtime overhead induced by FD
detection does not grow proportional to dataset size. We run
the FD detection algorithm over our datasets of varying sizes
(1M, 10M, 100M) and confirm that the runtime remains con-
stant. On average across five trials, we found that the 1M
dataset required 7.5 s, the 10M dataset required 7.41 s, and
the 100M dataset required 7.27 s.

7.4.6 Variance pruning

As described in Sect. 4.6, additional pruning is possiblewhen
users issue DIFF queries with both mean shift and support
quality metrics. We evaluate the effectiveness of these prun-
ing optimizations on a synthetic benchmark dataset with R
and S consisting of 1 million records each with 15 dimen-
sions d1 . . . d15, each uniformly distributed over ten possible
attribute values. The benchmark has a real-valued metric H
which is normally distributedN (10, r) unless the record has
d0 = 1 in which case H is normally distributed N (50, 5r)
for a real-valued parameter r that describes the internal vari-
ance of the data. In our experiments, r = 1 is used for a
dataset with low variance and r = 3 is used for a dataset
with high variance. We execute a DIFF query to identify the
explanation A∗ = {d0 = 1} using a support threshold of

θsupp = 0.05 and a mean shift threshold of θms = 4.0 and
present the execution times for identifying explanations in
Fig. 10. On datasets with low variance, our derived inequal-
ity yields stronger bounds on the means of the candidate
explanations, and variance pruning is able to achieve up to a
5× speedup.

7.4.7 Multi-query optimization

In this section, we evaluate the performance of MB SQL’s
multi-query optimization. On each dataset, we run four
queries sequentially with different difference metric thresh-
olds, with and without the multi-query optimization; the
results are shown in Fig. 11. All four queries used support
and risk ratio as difference metrics. In each case, one query
had a high support and low risk ratio threshold, one had a low
support and high risk ratio threshold, one had both low, and
one had both high. We find that the optimization improves
performance by 2–3×. The performance of the multi-query
is always similar to the performance of the slowest original
query; the magnitude of the overall speedup depends on the
differences between the original queries’ performances.

7.5 Comparison of differencemetrics and
parameters

To evaluate the relative performance of MB SQL’s DIFF

running with different difference metrics, we compare
their runtimes on CMS. The results are shown in Fig. 12.
The Support Only query, equivalent to classical FIM,
is fastest due to its simplicity and amenability to bitmap
optimizations. Combining support with risk ratio (Risk
Ratio) or odds ratio (Odds Ratio) yielded a slightly
slower query. Combining support with the mean shift metric
is even slower, since the mean shift cannot take advantage of
our bitmap optimizations.

To evaluate how support and ratio thresholds affect the
performance of our DIFF implementation, we picked two
representative queries (Risk Ratio and Mean Shift)
and ran them with varying support and ratio. The results are
shown in Fig. 13. In the left chart, we confirm that decreasing
support increases runtime. At low supports, Mean Shift
outperformsRisk Ratiobecause theMean Shiftprun-
ing rules aremore efficient. (Mean Shift requires itemsets
to be supported among both test and control rows, but Risk
Ratio only among test rows.) At higher supports, Risk
Ratio becomes faster as it can take advantage of bitmap
optimizations. Examining the right chart in Fig. 13, we find
that decreasing either the risk ratio or the mean shift ratio
decreases runtime. This is attributable to the minimality rule
in Sect. 2.4. At low ratios, most low-order itemsets that pass
the support threshold also pass the ratio threshold, so their
higher-order supersets never need to be considered.With high

123

DIFF: a relational interface for large-scale data explanation

Fig. 11 Throughput comparison of four queries run sequentially on the same dataset with different difference metric thresholds, with and without
multi-query optimization

Fig. 12 Throughput of different differencemetrics on CMS, with a fixed
ratio of 2.0 (except for Support Only)

Fig. 13 Throughput of two DIFF queries with varying support (left)
and ratio (right) thresholds

ratios, fewer itemsets are pruned byminimality, somoremust
be considered.

8 Industrial workloads

In this section, we share lessons learned from our 2-year
experience deploying the MacroBase explanation engine in
a large-scale industrial setting at Microsoft. We also discuss
early adoption of the DIFF operator in a deployment at Face-
book, as well as early lessons learned from an ongoing pilot
study with the Censys security research project.

8.1 Microsoft deployment

The DIFF operator was refined as part of a collaboration with
cloud infrastructure teams at Microsoft. Engineers on these
teams monitor application metrics by looking at aggregated
dashboards aswell as automated alerts.One commonneed, as

Table 4 Test and control relations in use at Microsoft

Split type Description

Movers Before-and-after comparisons across user-specified
time windows. The analyst determines which cus-
tomer cohorts exhibited the most change between two
given days, weeks, months, etc.

Outliers Outliers vs inliers on a user-specified metric. The
analyst determineswhich features aremost highly cor-
related with the outlying behavior observed for the
metric

Population Comparing a user-specified subset of the input data
against the entire dataset. The analyst determines
which features are unique or atypical to a particular
subpopulation in the data

seenwithMacroBase [8], is to explain anomalous events such
as latency or failure rate spikes [20,30]. Digging into these
anomalies required manual inspection of the raw event logs
behind the dashboards and running handcrafted SQL group
by queries to identify potential correlations.Moreover, going
from dashboard to handcrafted SQL and executing multiple
expensive group by queries imposed significant overheads
on engineer productivity. These requirements motivated the
need for an operator that was flexible enough to capture mul-
tiple anomaly types visible on the dashboard and scalable
enough to provide interactive results on large data streams.

With help from our collaborators, we integrated the DIFF

operator so that it is available to other engineers at Microsoft
primarily through a dashboard interface, which can run a
structured subset of DIFF queries on different subsets of the
data. Engineers at Microsoft have found three types of test/-
control pairings to be most commonly useful, so options for
executing DIFF on these test/control datasets are available
as part of the "Transforms" section of the dashboard. These
three types of test/control splits are summarized in Table 4.

In Fig. 14, we illustrate how a movers DIFF query allows
users to specify time ranges in a dashboard and identify
potential explanations for an observed query count spike on
January 15. In this case, the DIFF operator was able to iden-
tify a number of request origin categories that were highly

123

Abuzaid et al.

Fig. 14 A dashboard interface for issuing DIFF queries at Microsoft
allowsusers to search for attribute combinations correlatedwith changes
across test and control relations

Fig. 15 An automated query runner at Microsoft—termed “smart
analytics”—runs multiple DIFF queries automatically and shows a
ranked list of the most interesting query results

correlated with an increase in requests on a user-specified
time window.

In order tomake DIFF queriesmore accessible to neophyte
users, we have found that automatically running multiple
DIFF queries on a dataset with varying parameters and
options and then exposing the most significant results can
also provide meaningful results.We illustrate one such usage
of automatic DIFF queries in Fig. 15: Here, a population
comparison DIFF query is used to discover that failed mes-
sages are highly correlated with both photo-sharing as well
as mobile client network type.

All of theseDIFF queries are integratedwith the dashboard
service at Microsoft via a REST API. Our implementation
of the DIFF operator is exposed as a Kubernetes Web service
which accepts requests specifying the query parameters as
well as the dataset to operate over, which can be provided
either inline or as an external http path and is often pre-
aggregated by an external query service. Results are then
returned as JSON to the dashboard service for display.

This integration has seen significant usage. In Fig. 16, we
show counts for the number of requests to the DIFF executor
service at Microsoft. Since Microsoft was part of the moti-
vation for expanding the DIFF operator to support a flexible
range of queries, we were pleased to see that multiple query
types are all seeing use beyond the original outlier explana-
tions introduced in MacroBase [8].

Fig. 16 Weekly DIFF requests from a dashboard service at Microsoft.
All three DIFF query types supported by the dashboard see consistent
week over week usage

8.2 Additional applications

In addition to the production deployment at Microsoft, we
have seen success applying the DIFF operator in a variety of
additional settings.

Facebook At Facebook, teams often evaluate the reliability
andperformanceof different application and service features;
if a feature performs unexpectedly on a given target metric,
analysts must quickly find the root cause of the deviation. To
do this, an analyst typically hypothesizes several dimensions
that could be highly correlated with the metric’s unforeseen
performance; each hypothesis is thenmanually validated one
at a time by executing multiple relational queries.

Existing explanation engines cannot be efficiently applied
in this scenario, as they would only be capable of operating
on small data subsets, and data movement is heavily discour-
aged, especially given that declarative relational workflows
are already commonplace. With the DIFF operator, analysts
can instead automate this procedure without leaving their
workspace. In a matter of minutes, the analyst can execute
a DIFF query evaluating an entire day of experiment dimen-
sions, which directly reveals the combination of factors that
are most responsible for the deviation.

Censys Censys is a search engine over Internet-wide port
scan data [23], enabling security researchers to monitor how
Internet devices, networks, and infrastructure change over
time.

At Censys, researchers have performed thousands of
Internet-wide scans consisting of trillions of probes, and
these data have played a central role in analyzing and under-
standing some of the most significant Internet-scale vulner-
abilities, such as Heartbleed [22] and the Mirai botnet [3].
Uncovering these vulnerabilities is often time-consuming—
teams of researchers spend months analyzing Censys data to
understand the genesis of the vulnerability.

Due to the high volume of these Internet-wide scans, dis-
tributed operators are required for scalable analyses—hence,

123

DIFF: a relational interface for large-scale data explanation

existing explanation engines are insufficient. In our pilot
project, Censys researchers have used the DIFF operator to
automate these analyses, allowing them tofindpotential secu-
rity vulnerabilities as they evolve. For example, researchers
can execute DIFF queries over scans from different time
ranges (e.g., week over week or month over month), which
reveal trends that are difficult to uncover through typical
declarative relational analyses, such as bursts of activities on
particular ports among a set of IP addresses, or a sharp drop
in certain device types across several autonomous systems.

The high velocity of the Censys data has also tested the
scalability of our implementation, even with our logical and
physical optimizations. It has highlighted the potential role
that sampling could play in quickly uncovering insights to
users with DIFF: An intelligent sampling strategy could mit-
igate the ingest scalability challenges that Censys poses. It is
important to stress, however, that straightforward approaches
(e.g., uniform sampling) are not sufficient, particularly when
attempting to explain anomalies or outliers at the scale of the
Internet. Designing more clever and representative sampling
techniques is an interesting area for future work.

9 Related work

Explanationquery engines Many researchers have explored
extending the functionality of databases to understand
causality and answer explanation queries, starting with
Sarawagi and Sathe’s i3 system. Unlike our proposed DIFF

operator, Sarawagi and Sathe’s DIFF finds differences
between two different cells in an OLAP cube, rather than
two relations (or alternatively, two data cubes). Subsequently,
Fagin et al. [24,25] introduce a theoretical framework for
answering explanation queries in their proposed data model,
a multi-structural database. They propose a DIFFERENTIATE
operator that, unlike DIFF, requires solving an NP-hard opti-
mization problem for an exact answer.

We implemented DIFF as a relational interface for Mac-
roBase; our difference metrics abstraction generalizes the
support and risk ratio semantics introducedbyBailis et al. [8].
Others have proposed general frameworks for explanation
queries: Roy et al. [56] developed a formal approach for
explanation queries over multiple relations, but they require
computing an entire data cube to evaluate queries. Wu and
Madden [66] introduce a framework for finding explana-
tions for aggregate queries on a single relation based on
the notion of influence, which we can express using our
DIFF operator. Finally, many specialized explanation query
engines have also been proposed to explain performance bot-
tlenecks [38,57,68] or diagnose data errors [64]; the DIFF

operator allows us to express core subroutines of each of
these systems using a single interfacewithout sacrificing per-
formance.

Feature selection Finding explanations for trends in large-
scale datasets can be cast as a feature selection problem,
an important task in machine learning [31,35,40,47,59].
Various feature selection techniques, such as compressive
sensing [12], correlation-based tests [32], and tree-based
approaches [55], are used to select a subset of relevant
features (i.e., variables, predictors) to construct a machine
learning model. Through our difference metric interface,
the DIFF operator presents a generalizable approach for
efficiently applying one or more correlation-based feature
selection techniques (e.g., Chi-squared tests) and retrieving
relevant features.

Multiple hypothesis testing Because a DIFF query can pro-
duce many explanations, it is potentially vulnerable to false
positives (Type I errors). We can correct for this by calcu-
lating p values for our difference metrics, as Bailis et al. [8]
do for risk ratio. We can then compare these p values to our
desired confidence thresholds, applying corrections such as
the Bonferroni correction [58] or the Benjamini–Hochberg
procedure [13] to account for the number of explanations
returned. We can then set our support threshold high enough
that any explanation that passes it must be significant. In
our experiments, our support thresholds were high enough
given the relatively small number of explanations returned
and relatively large number of rows in our datasets to ensure
statistical significance.

Frequent Itemset Mining Our work draws inspiration from
the Frequent Itemset Mining (FIM) literature [45]; specif-
ically, the DIFF operator uses a variant of the Apriori
algorithm [2] to explore different dimension combinations
as itemsets, which are potential explanations that answer a
given DIFF query. A substantial amount of prior work opti-
mizes Apriori performance, such as applying bitmap indexes
for faster candidate generation [6,15,26,70]. This previous
work, however, mostly considers lists of transactions instead
of relational tables and thus has no notion of column cardinal-
ity; we show in Sect. 7 that cardinality-aware bitmap indexes
lead to substantial improvements for DIFF query evaluation.
Additionally, prior work does not consider opportunities to
optimize over relational data: Our experiments illustrate that
we can exploit functional dependencies to prune the search
space of Apriori and accelerate DIFF query performance.
Proposals for custom FIM indexes in relational databases—
such as I-trees [10] and IMine [11]—apply to FPGrowth [62],
not Apriori.

OLAPquery optimization Query optimization has long been
a research focus for the database community [18,28,33,34].
In this paper, we present novel logical optimizations and
an efficient physical implementation for DIFF, a new rela-
tional operator. Our physical optimizations leverage previous

123

Abuzaid et al.

techniques used to accelerate OLAP workloads, including
columnar storage [63], dictionary encoding [49], and bitmap
indexes [17,53]. Our implementation of DIFF requires a
data-dependent application of these techniques that take
into account the cardinality of individual attributes. With
these improvements, the DIFF operator can be incorporated
into existing OLAP warehouses, such as Druid [67] and
Impala [14].

In addition, our proposedoptimizations draw fromresearch
in adaptive query processing [5,7,21]. We show in Sect. 4
how to optimize DIFF–JOIN queries using our adaptive algo-
rithm, which builds upon extensive work on optimizing
JOINs [51,52,54,60,61]. Our algorithm also shares similarity
with recentwork examining the cost ofmaterializingJOINs in
machine learning workloads [19,42], including learning over
JOINs [41].Kumar et al. [43] study the impact of avoidingpri-
mary key-foreign key (KFK) JOINs during feature selection;
they develop a set of information-theoretic decision rules
to inform users when a KFK JOIN can be safely avoided
without leading to a lower test accuracy for the downstream
machine learning model. In our work, we assume that the
JOIN is beneficial for the downstream model, and we design
an adaptive algorithm for evaluating the JOIN efficiently in
a data-dependent manner.

Lastly, our logical optimizations borrow from previous
workon functional dependencies (FDs), such asCORDS[36],
whichmines datasets for FDs. InMBSQL,wedonot focus on
functional dependency discovery—we assume that they are
provided by the user. Our contribution is a modified version
of the Apriori algorithm that takes advantage of functional
dependencies to prune the search space during candidate gen-
eration.

10 Conclusion

To combat the interoperability and scalability challenges
common in large-scale data explanation tasks, we pre-
sented the DIFF operator, a declarative operator that unifies
explanation and feature selection queries with relational ana-
lytics workloads. We also present ANTI DIFF, a companion
operator that evaluates the complement of DIFF. Because
both DIFF and ANTI DIFF are semantically equivalent to
a standard relational query composed of UNION, GROUP BY

, and CUBE operators, they integrate with current analytics
pipelines, providing a solution for improved interoperabil-
ity. Further, by providing logical and physical optimizations
that take advantage of DIFF’s relational model and usage
patterns, we are able to scale to large industrial workloads
acrossMicrosoft andFacebook.Weare continuing to develop
the DIFF and ANTI DIFF operators with our collaborators,
including Microsoft, Facebook, Censys, and Google, and

hope to provide additional improvements to further boost
data analyst productivity.

Acknowledgements We thankKexinRong, HectorGarcia-Molina, our
colleagues in the Stanford DAWN Project, and the anonymous VLDB
reviewers for their detailed feedback on earlier drafts of this work.
This research was supported in part by affiliate members and other
supporters of the Stanford DAWN project—Ant Financial, Facebook,
Google, Intel, Microsoft, NEC, SAP, Teradata, and VMware—as well
as Toyota Research Institute, Keysight Technologies, Hitachi, Northrop
Grumman, Amazon Web Services, Juniper Networks, NetApp, and the
NSF under CAREER grant CNS-1651570. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National
Science Foundation.

A Translating DIFF to standard SQL

Wepresent a sample DIFF query, borrowed from theExample
Workflow in Sect. 2.1, and its translation into standard SQL.

SELECT * FROM
(SELECT * FROM logs WHERE crash = true)

crash_logs
DIFF

(SELECT * FROM logs WHERE crash = false)
success_logs

ON app_version , device_type , os
COMPARE BY risk_ratio >= 2.0, support >= 0.05

MAX ORDER 3;

This query is equivalent to the followingPostgres-compatible
SQL query:

SELECT app_version ,
device_type ,
os ,
support(test_attr_count ,

test_global_count),
risk_ratio(test_attr_count ,

control_attr_count ,
test_global_count ,
control_global_count)

FROM (SELECT app_version ,
device_type ,
os ,
COUNT (*) as test_attr_count ,
(SELECT COUNT (*) FROM logs WHERE

crash = true) as
test_global_count

FROM logs WHERE crash = true
GROUP BY GROUPING SETS (

(app_version),
(device_type),
(os),
(app_version , device_type),
(app_version , os),
(device_type , os),
(app_version , device_type , os)

)
) t1 NATURAL JOIN

(SELECT app_version ,
device_type ,
os ,
COUNT (*) as control_attr_count ,
(SELECT COUNT (*) FROM logs WHERE crash =

false) as control_global_count
FROM logs WHERE crash = false
GROUP BY GROUPING SETS (

(app_version),
(device_type),
(os),

123

DIFF: a relational interface for large-scale data explanation

(app_version , device_type),
(app_version , os),
(device_type , os),
(app_version , device_type , os)

)
) t2

WHERE support(test_attr_count ,
test_global_count) >= 0.05 AND

risk_ratio(test_attr_count ,
control_attr_count ,
test_global_count ,
control_global_count) >=

2.0;

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases:
The Logical Level. Addison-Wesley Longman Publishing Co. Inc,
Boston (1995)

2. Agarwal, R., Srikant, R., et al.: Fast algorithms for mining associ-
ation rules. In: VLDB, pp. 487–499 (1994)

3. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein,
E., Cochran, J., Durumeric, Z., Halderman, J.A., Invernizzi,
L., Kallitsis, M., Kumar, D., Lever, C., Ma, Z., Mason,
J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K.,
Zhou, Y.: Understanding the mirai botnet. In: USENIX Secu-
rity (2017). https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/antonakakis

4. Armbrust, M., et al.: Spark sql: relational data processing in spark.
In: SIGMOD, pp. 1383–1394. ACM (2015)

5. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query
processing. In: SIGMOD, vol. 29, pp. 261–272. ACM (2000)

6. Ayres, J., et al.: Sequential pattern mining using a bitmap repre-
sentation. In: KDD, pp. 429–435. ACM (2002)

7. Babu, S., Bizarro, P., DeWitt, D.: Proactive re-optimization. In:
SIGMOD, pp. 107–118. ACM (2005)

8. Bailis, P., Gan, E., Madden, S., Narayanan, D., Rong, K., Suri, S.:
Macrobase: prioritizing attention in fast data. In: SIGMOD, pp.
541–556. ACM (2017)

9. Bailis, P., et al.: Prioritizing attention in fast data: principles and
promise. In: CIDR. Google Scholar (2017)

10. Baralis, E., Cerquitelli, T., Chiusano, S.: Index support for frequent
itemset mining in a relational dbms. In: ICDE, pp. 754–765. IEEE
(2005)

11. Baralis, E., Cerquitelli, T., Chiusano, S.: Imine: index support for
item set mining. IEEE Trans. Knowl. Data Eng. 21(4), 493–506
(2009)

12. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal
Process. Mag. 24(4), 118–121 (2007)

13. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate
in multiple testing under dependency. Ann. Stat. 29, 1165–1188
(2001)

14. Bittorf, M., et al.: Impala: a modern, open-source SQL engine for
hadoop. In: CIDR (2015)

15. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: a maximal frequent
itemset algorithm for transactional databases. In: ICDE, pp. 443–
452. IEEE (2001)

16. Chambi, S., et al.: Better bitmap performancewith roaring bitmaps.
Softw. Pract. Exp. 46(5), 709–719 (2016)

17. Chambi, S., et al.: Optimizing druid with roaring bitmaps. In:
IDEAS, pp. 77–86. ACM (2016)

18. Chaudhuri, S.: An overview of query optimization in relational
systems. In: PODS, pp. 34–43. ACM (1998)

19. Chen, L., et al.: Towards linear algebra over normalized data.
PVLDB 10(11), 1214–1225 (2017)

20. Dean, J., Barroso, L.A.: The tail at scale. Commun.ACM 56, 74–80
(2013)

21. Deshpande, A., et al.: Adaptive query processing. Found. Trends
Databases 1(1), 1–140 (2007)

22. Durumeric, Z., et al.: The matter of heartbleed. In: IMC, pp. 475–
488. ACM (2014)

23. Durumeric, Z., et al.: A search engine backed by Internet-wide
scanning. In: SIGSAC, pp. 542–553. ACM (2015)

24. Fagin, R., et al.: Efficient implementation of large-scale multi-
structural databases. In: VLDB, pp. 958–969. VLDB Endowment
(2005)

25. Fagin, R., et al.: Multi-structural databases. In: PODS, pp. 184–
195. ACM (2005)

26. Fang, W., et al.: Frequent itemset mining on graphics processors.
In: DaMoN, pp. 34–42. ACM (2009)

27. Fournier-Viger, P., et al.: The SPMF open-source data mining
library version 2. In: Joint European conference on machine learn-
ing and knowledge discovery in databases, pp. 36–40. Springer
(2016)

28. Graefe, G., McKenna, W.J.: The volcano optimizer generator:
extensibility and efficient search. In: ICDE, pp. 209–218. IEEE
(1993)

29. Gray, J., et al.: Data cube: a relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-totals. Data Min. Knowl.
Discov. 1(1), 29–53 (1997)

30. Greenberg, A., et al.: The cost of a cloud: research problems in
data center networks. ACM SIGCOMM Comput. Commun. Rev.
39(1), 68–73 (2008)

31. Guyon, I., Elisseeff, A.: An introduction to variable and feature
selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

32. Hall, M.A.: Correlation-based feature selection of discrete and
numeric class machine learning. Working Paper Series (2000)

33. Hellerstein, J.M., Stonebraker, M.: Readings in database systems.
MIT press (2005)

34. Hellerstein, J.M., et al.: Architecture of a database system. Found.
Trends® Databases 1(2), 141–259 (2007)

35. Hoi, S.C., et al.: Online feature selection for mining big data. In:
BigMine, pp. 93–100. ACM (2012)

36. Ilyas, I.F., et al.: Cords: automatic discovery of correlations and
soft functional dependencies. In: SIGMOD, pp. 647–658. ACM
(2004)

37. Ioannidis, Y.E., Christodoulakis, S.: On the Propagation of Errors
in the Size of Join Results, vol. 20. ACM, New York (1991)

38. Khoussainova, N., Balazinska, M., Suciu, D.: Perfxplain: debug-
ging mapreduce job performance. PVLDB 5(7), 598–609 (2012)

39. Kimball, R., Ross,M.: TheDataWarehouse Toolkit: The Complete
Guide to Dimensional Modeling. Wiley, Hoboken (2011)

40. Konda, P., et al.: Feature selection in enterprise analytics: a demon-
stration using an r-based data analytics system. PVLDB 6(12),
1306–1309 (2013)

41. Kumar, A.: Learning over joins. Ph.D. thesis, The University of
Wisconsin-Madison (2016)

42. Kumar, A., Naughton, J., Patel, J.M.: Learning generalized linear
models over normalized data. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp.
1969–1984. ACM (2015)

43. Kumar, A., et al.: To join or not to join?: thinking twice about joins
before feature selection. In: SIGMOD, pp. 19–34. ACM (2016)

44. Lamb,A., et al.: The vertica analytic database: C-store 7 years later.
VLDB 5(12), 1790–1801 (2012)

45. Leskovec, J., et al.: Mining of Massive Datasets. Cambridge Uni-
versity Press, Cambridge (2014)

46. Li, H., et al.: Pfp: parallel fp-growth for query recommendation.
In: RecSys, pp. 107–114. ACM (2008)

47. Li, J., et al.: Feature selection: a data perspective. ACM Comput.
Surv. (CSUR) 50(6), 94 (2017)

123

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis

Abuzaid et al.

48. Meliou, A., Roy, S., Suciu, D.: Causality and explanations in
databases. PVLDB 7(13), 1715–1716 (2014)

49. Melnik, S., et al.: Dremel: interactive analysis of web-scale
datasets. PVLDB 3(1–2), 330–339 (2010)

50. Meng, X., et al.: Mllib: machine learning in apache spark. J. Mach.
Learn. Res. 17(1), 1235–1241 (2016)

51. Neumann, T., Radke, B.: Adaptive optimization of very large join
queries. In: SIGMOD, pp. 677–692. ACM (2018)

52. Ngo, H.Q., et al.: Worst-case optimal join algorithms. J. ACM:
JACM 65(3), 16 (2018)

53. O’Neil, P., Quass, D.: Improved query performance with variant
indexes. In: SIGMOD, vol. 26, pp. 38–49. ACM (1997)

54. Pagh, A., Pagh, R.: Scalable computation of acyclic joins. In:
PODS, pp. 225–232. ACM (2006)

55. Rounds, E.: A combined nonparametric approach to feature selec-
tion and binary decision tree design. Pattern Recogn. 12(5),
313–317 (1980)

56. Roy, S., Suciu, D.: A formal approach to finding explanations for
database queries. In: SIGMOD, pp. 1579–1590. ACM (2014)

57. Roy, S., et al.: Perfaugur: robust diagnostics for performance
anomalies in cloud services. In: 2015 IEEE 31st International Con-
ference on Data Engineering (ICDE), pp. 1167–1178. IEEE (2015)

58. Rupert Jr., G., et al.: Simultaneous Statistical Inference. Springer,
Berlin (2012)

59. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection
techniques in bioinformatics. Bioinformatics 23(19), 2507–2517
(2007)

60. Schuh, S., Chen, X., Dittrich, J.: An experimental comparison of
thirteen relational equi-joins in main memory. In: SIGMOD, pp.
1961–1976. ACM (2016)

61. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database man-
agement system. In: Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, pp. 23–34
(1979)

62. Shang, X., Sattler, KU., Geist, I.: SQL based frequent pattern
mining with FP-growth. In: Seipel, D., Hanus, M., Geske, U.,
Bartenstein, O. (eds.) Applications of Declarative Programming
and Knowledge Management. INAP 2004, WLP 2004. Lecture
Notes in Computer Science, vol. 3392. Springer, Berlin, Heidel-
berg (2005). https://doi.org/10.1007/11415763_3

63. Stonebraker, M., et al.: C-store: a column-oriented dbms. In:
VLDB, pp. 553–564. VLDB Endowment (2005)

64. Wang, X., et al.: Data x-ray: a diagnostic tool for data errors. In:
SIGMOD, pp. 1231–1245. ACM (2015)

65. Willard, D.E.: Applications of range query theory to relational data
base join and selection operations. J. Comput. Syst. Sci. 52(1), 157–
169 (1996)

66. Wu, E., Madden, S.: Scorpion: explaining away outliers in aggre-
gate queries. PVLDB 6(8), 553–564 (2013)

67. Yang, F., et al.: Druid: A real-time analytical data store. In: SIG-
MOD, pp. 157–168. ACM (2014)

68. Yoon, D.Y., Niu, N., Mozafari, B.: Dbsherlock: a performance
diagnostic tool for transactional databases. In: SIGMOD, pp. 1599–
1614. ACM (2016)

69. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: NSDI, pp. 2–2.
USENIX Association (2012)

70. Zhang, F., Zhang, Y., Bakos, J.: Gpapriori: Gpu-accelerated fre-
quent itemset mining. In: 2011 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 590–594. IEEE (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/11415763_3

	DIFF: a relational interface for large-scale data explanation
	Abstract
	1 Introduction
	2 The DIFF operator
	2.1 DIFF operator syntax and example workflow
	2.2 Formal definition of the DIFF operator
	2.3 DIFF generality
	2.4 Practical considerations for DIFF
	2.5 Supporting continuous attributes

	3 ANTI DIFF: a complement to DIFF
	3.1 Example workflow and formal definition

	4 Logical optimizations for DIFF
	4.1 DIFF–JOIN predicate pushdown
	4.2 ANTI DIFF pruning
	4.3 Leveraging hard functional dependencies
	4.4 Leveraging soft functional dependencies
	4.5 Automatic FD detection
	4.6 Variance pruning
	4.7 Multi-query optimization

	5 Physical optimizations for DIFF
	5.1 Algorithms
	5.2 Packed integers and column ordering
	5.3 Bitmaps

	6 Implementation
	6.1 MB SQL in Spark

	7 Evaluation
	7.1 Experimental setup
	7.2 Datasets
	7.3 End-to-end benchmarks
	7.3.1 Generality
	7.3.2 Distributed

	7.4 Analysis of optimizations
	7.4.1 Single-node factor analysis
	7.4.2 Distributed factor analysis
	7.4.3 DIFF–JOIN
	7.4.4 ANTI DIFF
	7.4.5 Functional dependencies
	7.4.6 Variance pruning
	7.4.7 Multi-query optimization

	7.5 Comparison of difference metrics and parameters

	8 Industrial workloads
	8.1 Microsoft deployment
	8.2 Additional applications

	9 Related work
	10 Conclusion
	Acknowledgements
	A Translating DIFF to standard SQL
	References

