
Machine Learning with DBOS
Robert Redmond∗

MIT
Nathan W. Weckwerth∗

MIT
Brian S. Xia∗

MIT

Qian Li
Stanford University

Peter Kraft
Stanford University

Deeptaanshu Kumar
CMU

Çağatay Demiralp
Sigma Computing

Michael Stonebraker
MIT

ABSTRACT
We recently proposed a new cluster operating system stack, DBOS,
centered on a DBMS. DBOS enables unique support for ML ap-
plications by encapsulating ML code within stored procedures,
centralizing ancillary ML data, providing security built into the
underlying DBMS, co-locating ML code and data, and tracking data
and work�ow provenance.

Here we demonstrate a subset of these bene�ts around two ML
applications. We �rst show that image classi�cation and object
detection models using GPUs can be served as DBOS stored proce-
dures with performance competitive to existing systems. We then
present a 1D CNN trained to detect anomalies in HTTP requests
on DBOS-backed web services, achieving SOTA results. We use
this model to develop an interactive anomaly detection system and
evaluate it through qualitative user feedback, demonstrating its
usefulness as a proof of concept for future work to develop learned
real-time security services on top of DBOS.

KEYWORDS
database-oriented operating system, machine learning, anomaly
detection, heterogeneous hardware

1 INTRODUCTION
Weearlier introduced the database-oriented operating system (DBOS),
a new operating system stack [37] that stores all system and ap-
plication state in database tables and executes the operations on
state as transactions. We have been building and experimenting
with it in phases since then. DBOS o�ers several bene�ts over tradi-
tional OSes, which we discuss in detail elsewhere [23, 37]. Some of
the DBOS bene�ts are directly relevant to machine learning (ML).
In this paper, we �rst discuss these bene�ts in general. We then
demonstrate the practicability and scalability for a cross-section of
them through two application cases: (1) Serving GPU-accelerated
deep ML models on DBOS, where programs are implemented and
executed as stored procedures, and (2) developing an end-to-end
anomaly detection service, where the driving ML model and the

∗Authors contributed equally to this research.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and AIDB 2022. 4th International Workshop
on Applied AI for Database Systems and Applications (AIDB ’22). September 5th, 2022,
Sydney, Australia.

a�ordances of the interactive visual analysis interface leverage
provenance data for training and contextualization, respectively.

ML has become ubiquitous with applications across domains [4]
from molecular biology to law. ML models are increasingly used
to automate and augment software systems and user tasks, caus-
ing many applications to be redesigned [19, 43]. ML is, however,
typically built on top of most systems as secondary services or
applications. It is often di�cult for developers to �nd adequate
training data, address privacy and scalability concerns, or track and
manage updates to data as well as models. Application and system
software would bene�t from an OS stack that provides �rst-class
support for ML development and deployment. DBOS o�ers several
advantages in this context.
Data and Code Together While most existing cloud systems
disaggregate compute and data, DBOS tightly integrates them,
co-designing its function execution (stored procedure) subsystem
with a distributed DBMS. Since ML development and serving are
data-intensive, DBOS provides signi�cant performance gains for
data-intensive operations by bringing data and code together [23].
Its serverless environment reduces latencies due to data transfers
over network, and simpli�es task scheduling and memory manage-
ment, enabling performances exceeding those provided by Amazon
Lambda [1] and Open Whisk [9].
Security and Privacy With the increasing importance of data
protection and privacy requirements (e.g., GDPR and HIPAA), chal-
lenges in sandboxing model training and serving have become
a rate-limiting factor in adopting ML in the current multitenant
cloud computing settings. As a result of the above design choice, co-
locating data and code, DBOS executes all user applications and OS
services as stored procedures. This in turn provides a time-tested
means for sandboxing ML development and serving, bene�ting
from the built-in access control mechanisms of the underlying
DBMS. DBOS’s program execution model also o�ers an e�ective
solution for training and serving ML models without transferring
users’ data outside the database. This preempts and simpli�es a
multitude of privacy and security concerns along with associated
contractual hurdles in ML model development and serving in en-
terprises. We can further adopt recent work [2, 14] on database
security and privacy into DBOS.
Serverless Computation Work�ow DBOS provides a function-
as-a-service, or serverless, model of computation [23] where users
write large programs as graphs of smaller functions and submit
these to a remote service for execution. Serverless computing is

1

AIDB’22, September 5th, 2022, Sydney, Australia Redmond, Weckwerth, and Xia, et al.

becoming popular because it enables transparent application auto-
scaling, dramatically reducing the complexity of managing cloud
services [18]. We believe a serverless computing model will greatly
bene�t ML development and deployment, which often must run at
scale in distributed settings.
Data Governance and Observability Developing and deploying
ML models is an iterative process based on trial and error. ML
developers experiment with new datasets, models, and parameters
to achieve their modeling goals. ML models also often need to
be deployed and regularly updated to improve performance or
preserve them against shifts in data distributions that may occur
in application domains. DBOS makes model management [27, 40,
45] easier by centralizing and tracking relevant model data and
parameters. Since model performance is often determined by the
quality and the size of training data, reproducing various versions
or checkpoints in this process is critical for debugging. The data and
work�ow provenance of DBOS o�ers opportunities to improve the
ML development (e.g., training, debugging, introspection, etc.) and
serving experience. DBOS augments data provenance information
with work�ow provenance to further facilitate interpretability. It
records executions of user functions along with related metadata
and associates them with data provenance information. Moreover,
since we co-locate data and compute, we can potentially leverage
ideas from prior work [28] to automatically capture �ne-grained
data provenance.
Support for Heterogeneous Hardware Hardware like GPUs,
TPUs, SSDs, and FPGAs have become omnipresent in compute
clusters, bringing constraints as well as optimization opportunities
for ML and other data-centric applications at scale. Performant
ML models heavily rely on heterogeneous hardware such as GPUs
and TPUs. DBOS proposes directly supporting and managing such
hardware through its stored procedure interface freeing users from
the headaches of provisioning.
Training Data Given the current state of ML technology centered
on high-capacity models, the availability of large-scale training data
is perhaps the most important requirement for wider and deeper
adoption of ML. The data generated by DBOS provenance tracking
can facilitate the integration of ML to improve core OS components
as well as applications built on top of it.

In the following, we present results from two of our ongoing ML-
related projects around DBOS. In the �rst project (Section 2), we
investigate the performance of serving ML models in DBOS stored
procedures while using heterogeneous hardware such as GPUs. We
show that image classi�cation and object detection models using
GPUs can be served as DBOS stored procedures at scale without
incurring signi�cant performance loss. In the second project (Sec-
tion 3), we demonstrate how provenance data collected by DBOS
can be used to develop ML-driven applications to augment system
services. To that end, we present an ML model trained on HTTP
request logs collected by a DBOS-backed web service called Nectar
Network1. Using byte pair encoding along with a 1D CNN, we
achieve state-of-the-art (SOTA) performance. We use this model to
drive an interactive anomaly detection system and demonstrate its
usefulness through the qualitative feedback we collect.

1https://github.com/DBOS-project/apiary/tree/main/postgres-demo

transactional

invocation

external computation process

TCP

stateless function stateless function

underlying database

primary
 stored procedure

primary
 stored procedure

Figure 1: DBOS architecture for using external services. Up-
ward lines represent the �ow of data originating from the
underlying database. Downward lines represent the �ow of
information computed by an external process.

2 HETEROGENEOUS HARDWARE SUPPORT
DBOS proposes built-in support for heterogeneous hardware in a
serverless computation platform with tightly integrated computa-
tion and storage layers. Combined with data and work�ow prove-
nance tracking, this makes DBOS compelling for developers to use
in data- and compute-intensive tasks, including machine learning
development and deployment. DBOS can run compute-intensive
tasks as external services and thus utilize specialized hardware such
as GPUs. Below we brie�y describe the asynchronous programming
model architecture of DBOS and then results from ML models we
deployed using it.

2.1 System Architecture
In DBOS, programmers develop applications as a collection of
stored procedures, which use embedded SQL queries to commu-
nicate with the underlying SQL DBMS (VoltDB [38] in our case)
instance. These stored procedures run natively as ACID transac-
tions in the database. VoltDB achieves high OLTP performance
in part by a single-threaded-run-to-completion stored procedure
execution model. However, this model is ill-suited for computation-
ally intense tasks such as ML. To circumvent this problem, DBOS
enables developers to asynchronously invoke stateless functions
that are not tied to the database. These stateless functions connect
via TCP to an external process that manages the computation. Fig-
ure 1 shows the high-level architecture of DBOS’s asynchronous
programming model.

The entry point for an end-user to invoke a compute-intensive
task is a single primary stored procedure. This stored procedure
retrieves data from the database and asynchronously invokes a
stateless function, and the primary stored procedure also asyn-
chronously invokes another stored procedure to handle the return
value from the stateless function. This stateless function does not
have access to the database and thus can be run concurrently with
other stored procedures. It connects over TCP to a long-running

2

Machine Learning with DBOS AIDB’22, September 5th, 2022, Sydney, Australia

task ID piece ID data

Figure 2: Structure of a message sent to the external process.
Each message includes an identi�er denoting which task the
message belongs to and, if necessary, an identi�er resolving
which piece of the puzzle the message represents when pool-
ing data from multiple stateless functions.

external process managing computation. After computation occurs,
the computed information is transferred back to the other stored
procedure, at which point it may be inserted into the database. Mul-
tiple stored procedures may be invoked, leading tomultiple stateless
functions making TCP connections with the external process.
Primary Stored Procedure and Stateless Function A user-
de�ned end-to-end work�ow performs the following operations: (1)
invokes a stored procedure to fetch the desired data from the data-
base; (2) asynchronously invokes a stateless function and gives it
the retrieved data. When the stateless function receives a response
from the external process managing computation, it returns the
computed information; (3) asynchronously invokes another stored
procedure to insert the computed information into the database.
Note that operations (1) and (3), which directly interact with the
database, run as ACID transactions.

Even for a single computational task, data may need to be trans-
ferred using multiple invocations of the primary stored procedure.
This is due to the fundamental size limitations of VoltDB as a main-
memory database. VoltDB restricts the maximum column and row
sizes to respectively be 1MB and 2MB. Similarly, the maximum
return size of stored procedures is 50MB. Moreover, the current
DBOS implementation restricts stored procedures to 1MB due to
the way it serializes tasks. Regardless of particular size limits, one
can easily imagine computational tasks requiring signi�cantly more
data than what can be transferred at a single invocation. Nonethe-
less, this is not an issue since the external process will accept as
many connections as needed.
External Process An external process is a long-running process
that accepts TCP connections from potentially many stateless func-
tions. This has several advantages over doing computation directly
in stateless functions: (1) The external process can initialize compu-
tation structures (e.g., loading saved ML models) before receiving
any connections, eliminating potential long delays in computation.
(2) The limitation on the amount of information returned by a
stored procedure means that data from multiple stateless functions
may need to be pooled to run a single computation. (3) Transfer-
ring data over TCP means the external process may be run in any
high-level language, not just Java, and may potentially be run on
any machine. Figure 2 shows the structure of a message sent to the
external process. The external process determines which task the
data is for and how to assemble multiple pieces of data based on
the identi�ers at the start of the message.

The architecture we have described thus far is quite general,
and one can envision using this architecture to run many types of
compute-centric tasks. It also provides several advantages for ML
model deployment: (1) Data sent to the external process can easily
be used for either inference or training the model itself, by simply

Figure 3: Example images from each dataset from left to right:
MNIST, ImageNet, and COCO.

changing the task ID referenced in Figure 2 to tell the external
process which purpose to use it for. (2) Inference and training can
be performed immediately by the external process, or it can wait
until a certain batch size appears. This allows users to balance work
done by the external process between di�erent tasks or prioritize a
speci�c task over others. (3) The models themselves can be stored
in DBOS and loaded into the external process by simply storing
and sending 1MB chunks of the serialized model. Combined with
DBOS’s robust provenance system, this allows users to easily track
not only which data was used for training and inference, but also the
history of the model itself as it is trained on new data or experiences
architectural changes from the end user.

In our current implementation, we assume each compute in-
tensive task can run in a single external process. However, it is
possible to extend our system to interact with a group of external
processes for supporting distributed tasks, for example, large-scale
ML models (e.g., OpenAI GPT-3) inferences.

2.2 Evaluation
Now we evaluate this architecture for serving image classi�cation
models.
Datasets and ModelsWe select three popular image classi�cation
datasets with images at di�erent scales: MNIST [22], ImageNet [7],
and COCO [25]. Figure 3 shows an example from each dataset.
We believe that our datasets and corresponding models represent
realistic use cases for a user deploying an image classi�cationmodel.

The MNIST dataset consists of 70,000 images of handwritten
digits. Each image is black and white and has a fairly small size of
28⇥28 pixels. The MNIST model we use has a single hidden layer
with 512 nodes (or units). This is in line with the scale of other
MNIST models [22].

The ImageNet dataset [7] is an image dataset organized by the
WordNet hierarchy [39], containing over 14M images. The images
in ImageNet are scrapped from various sources on the web and vary
signi�cantly in size, with an average size of around 470⇥390 pixels—
most models often resize the images to a standard 256⇥256 or
224⇥224 pixels before using them. Training amodel to performwith
high accuracy on the ImageNet dataset can be quite costly compared
to training a classi�er for theMNIST dataset. Since developing novel
or extremely accurate models is not the goal of our evaluation, we
consider only the standard 1,000 categories that are used by the
ILSVRC challenge [34], an annual image classi�cation competition
run by the curators of ImageNet. More importantly, we perform
transfer learning using a pre-trained headless model [15]. The pre-
trained model uses the MobileNetV2 [35] architecture and was

3

AIDB’22, September 5th, 2022, Sydney, Australia Redmond, Weckwerth, and Xia, et al.

MNIST

0

2

4

6

8

10

A
m

or
ti

ze
d

La
te

nc
y

pe
r

Im
ag

e
(μ

s) 1 10 100 1000

CP
U

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

CP
U

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

CP
U

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

CP
U

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

ImageNet

0

2

4

6

8

A
m

or
ti

ze
d

La
te

nc
y

pe
r

Im
ag

e
(m

s)

1 10 100 1000

CP
U

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

CP
U

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

CP
U

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

CP
U

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

COCO

0

10

20

30

40

50

60

A
m

or
ti

ze
d

La
te

nc
y

pe
r

Im
ag

e
(m

s)

1 10 100 1000

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

G
PU

TF
-S
er
vi
ng

Ex
ec
ut
io
n

Figure 4: Comparing the external process on a CPU and GPU against TensorFlow-Serving and the baseline time spent executing
the model for testing across (from left to right) MNIST, ImageNet, and COCO datasets.

originally trained on the ImageNet dataset. It takes a 224⇥224-pixel
image as input and outputs a feature vector with 1,280 features; on
top of this, we add a layer acting as the classi�cation head, mapping
these features to the 1,000 categories from ILSVRC. This approach
saves signi�cant time on training while allowing the model to
perform quite well.

The COCO (Common Objects in Context) dataset [25] contains
328,000 images of 91 distinct and easily recognizable object types
such as “clock”, “horse”, and “tra�c light”. Not only is each image
labeled with each object type found in it, but each individual object
is marked with a bounding shape. The images have an average res-
olution of around 640⇥480 pixels, and models typically resize them
to standard sizes such as 512⇥512 pixels before using them. Similar
to the ImageNet dataset, there are high costs in training a model
to perform with high accuracy. Thus for simplicity, we directly
use a pre-trained model provided by TensorFlow on TensorFlow
Hub. The model [16] uses the CenterNet [47] architecture with the
Hourglass [29] backbone and was originally trained on the COCO
dataset. It takes a 512⇥512-pixel image as input and outputs data
identifying the objects in the images and bounding boxes for each
object.
Procedure and Setup For performing inference, each invocation
of the primary stored procedure fetches as many images as can
comfortably �t in 1MB. In all three datasets, the sizes we have
chosen to scale the images to are less than 1MB, so there is no need
to break an image into multiple pieces in the database.

The external process runs on a virtual machine equipped with
a GPU con�gured using Google Cloud Platform [31] and uses the
GPU to perform inference. To measure inference performance, we
provide comparisons against running on a CPU and against the
time spent directly running the model, as well as a comparison
against TensorFlow-Serving [30], a popular machine learning de-
ployment system. We anticipate some overhead on directly running
the model, but even against TensorFlow-Serving, there will be some
overhead incurred primarily by invoking stored procedures. For
each comparison we record performance numbers for 1, 10, 100,
and 1,000 invocations of the primary stored procedure.

2.3 Results
Table 1 and Figure 4 respectively show the inference (testing)
overhead and amortized latencies across datasets. The results are
promising, with overheads of less than 10% when compared with
TensorFlow-Serving for both the ImageNet and COCO datasets,

which contain signi�cantly larger images than the MNIST dataset.
Even for the MNIST dataset, with enough invocations of the pri-
mary stored procedure the overhead drops to just over 10%, and a
single invocation yields performance just under 30%worse than that
of TensorFlow-Serving. In general, the performance hit incurred
by deploying machine learning models using DBOS is negligible
compared to the cost of computation. We discuss the results per
model in more detail below.

While simple, our MNIST model achieved 96% accuracy or more
on the testing set. Since the MNIST images are only 28⇥28 pixels
and they are black and white, each only takes up 784 bytes, indicat-
ing 1,200 images could comfortably �t into a single MB and thus
we fetch this many with each invocation of the primary stored
procedure. The external process simply returns the classi�cation of
each image. We pay a relatively high overhead compared to both
model execution time and TensorFlow-Serving, especially when
only invoking a single stored procedure. We can also see in Figure 4
that the GPU is not dramatically better than the CPU for this ex-
ample. Both of these facts are understandable as the computation
here is relatively simple compared to the other inference tasks, with
inference taking only a few microseconds for each image. Even so,
the overhead is not too large; with 1,000 invocations of the primary
stored procedure the overhead against TensorFlow-Serving falls to
just over 10% and the overhead against the base model execution
time is 23.8%.

The ImageNet images have been scaled to 224⇥224 pixels and
they are color images, suggesting 6 images can comfortably �t into
1MB. Thus we fetch 6 images with each invocation of the primary
stored procedure. The external process simply returns the classi�-
cation of each image. Here the overhead against model execution
time and TensorFlow-Serving is, unsurprisingly, drastically better
than for the MNIST example. Note that for this model the GPU
outperforms the CPU by a factor of 3 (Figure 4) due to the compu-
tation being more complex. For our system using DBOS on a GPU,
even when invoking a single stored procedure the overhead against
TensorFlow-Serving is less than 10%, dropping to just 5% at 1,000
invocations.

The COCO images have been scaled to 512⇥512 pixels and they
are color images, suggesting only a single image can �t within 1MB.
Thus each invocation of the primary stored procedure fetches a sin-
gle image. For this example the external process returns more than
just a simple classi�cation for each image; instead, it returns data
corresponding to multiple objects identi�ed in the image and esti-
mated bounding boxes for each. Functionally this does not change

4

Machine Learning with DBOS AIDB’22, September 5th, 2022, Sydney, Australia

1 Invocation 1,000 Invocations

TF-Serving Execution TF-Serving Execution

MNIST 28.8% 72.7% 10.6% 23.8%
ImageNet 9.1% 26.3% 5.0% 16.7%
COCO 5.1% 6.7% 3.3% 9.8%

Table 1: Overhead incurred by DBOS with the external pro-
cess running on a GPU in comparison to TensorFlow-Serving
and raw model execution time across MNIST, ImageNet, and
COCO datasets. The overhead decreases at scale.

the implementation much as the information is still just sent back to
the stateless function. Here the overhead against model execution
time and TensorFlow-Serving is better than both of the previous
examples. Figure 4 shows the performance numbers in more detail,
although the CPU numbers are omitted as for this test the CPU is
orders of magnitude slower due to the complexity of the computa-
tion. In all cases for this model the overhead incurred is less than
10%, even when comparing directly against the model execution
time, and the overhead against TensorFlow-Serving is 5% or less.

3 ANOMALY DETECTION
DBOS tracks provenance for all VoltDB queries and updates. This
includes all OS state, any user state stored in VoltDB, and all stored
procedure invocations. The built-in data collection of DBOS brings
many opportunities for data-driven approaches for monitoring and
debugging. In particular, it facilitates ML applications for system
services, providing plentiful training data. Monitoring and prevent-
ing anomalous activity are key for security applications. Here we
introduce a new ML model trained on provenance data to detect
anomalous HTTP requests in real-time. This model provides high
prediction accuracy, achieving state-of-the-art results. We then
present the user interface of an interactive system built on this
model. We evaluate the user interface with two qualitative user
studies, one formative (initial) and one summative (�nal). Results
suggest substantial improvement in the usefulness of the user inter-
face over its iterations informed by the formative study. Crucially,
our interactive tool serves as a proof-of-concept for future work
to develop end-to-end security analysis system services or applica-
tions on DBOS.
Provenance Capture We designed the DBOS stack to support
robust data and work�ow provenance. A high-performance DBMS
can store structured, provenance information that is easily accessi-
ble through SQL queries. In practice, VoltDB [38] serves as the main
memory DBMS that stores OS state. However, VoltDB is unsuited
for handling large amounts of provenance data, requiring data to
be spooled to Vertica [21] for long-term storage and downstream
analysis. Vertica signi�cantly outperforms VoltDB in performance
with regard to provenance queries on tables that have larger than
105 rows [20]. This clearly highlights the importance of a dedicated
OLAP system like Vertica to serve as the storehouse for provenance
data.

One important question is what can be answered through such
a data provenance system. Below are some potential queries of
interest.

• Table history. Who was the last person to write to a particu-
lar table?Which table had the most updates over an arbitrary
time frame?

• Compromised users. What are all of the blocks that were
read or written by a compromised user over an arbitrary time
frame? Who are all of the users that read a compromised
block over an arbitrary time frame?

• Chain of provenance. What are all of the blocks that may
have resulted from reading a particular block (downstream)?
What are all of the blocks that may have in�uenced a partic-
ular block (upstream)?

• Debugging. What is the exact state of a table at a particular
point in time?

Web Application Attacks Web applications have quickly become
one of the most popular platforms for information and service
delivery [6, 24]. They have several features that have led to their
success, such as remote accessibility, cross-platform compatibility,
and fast development. As a result, web applications are also used
for providing services such as healthcare and �nancial services that
often handle sensitive data. On the other hand, web applications
are the most common attack vector (a means by which an attacker
can gain access to a network server) used for intrusion, resulting
in the most breaches and compromised data [3]. In the following
sections, we detail the most common types of web application
attacks, including the methodology and end goal.
SQL injection A SQL injection attack occurs when a malicious user
tampers with the SQL queries sent by the web application to its
corresponding database [8, 24]. This occurs when SQL keywords
or operators are inserted into queries without input sanitization
to explicitly remove or �lter them out. This can be done through
malevolent insertions into user inputs (e.g. �llable �elds), cookies,
and/or HTTP headers. Importantly, the contents of the insertion
dictate whether the attack is of the �rst- or second-order. First-order
attacks are executed immediately with the intent to return results
immediately. In other words, the entire attack is localized within
the insertion. A concrete example is using the union keyword to
attach malicious SQL queries to the end of standard SQL queries.
Second-order attacks rely on an initial insertion that lies dormant
for some period of time, usually until a follow-up insertion prompts
the execution of the �rst insertion. A concrete example is inserting
an initial malicious query that can be prompted at a later date. The
follow-up query would return metadata on users who have accessed
the web application since the initial insertion. The overall purpose
of these attacks may be to steal credentials, alter data, delete data,
and/or access connected resources.
Cross-site scripting Cross-site scripting (XSS) occurs when a mali-
cious user is able to execute custom scripts in a victim’s browser [24].
This typically occurs when web responses are unsanitized, meaning
they are unchecked for special characters/keywords that may lead
to unexpected or malicious behavior. This becomes problematic
when web applications utilize the same-origin policy, which allows
scripts in a webpage to access the data in another webpage if they

5

AIDB’22, September 5th, 2022, Sydney, Australia Redmond, Weckwerth, and Xia, et al.

Figure 5: Snippet of an HTTP request log from Nectar Net-
work.

both come from the same origin (combination of URI scheme, host
name, and port number). For instance, an attacker could insert
a malicious script into a less secure webpage in order to access
con�dential information from a more secure webpage. Similar to
SQL injection, there are �rst- and second-order attacks that dictate
the timing of when the attack occurs. A �rst-order attack, such as
re�ected XSS, prompts the user to click on a custom link which
delivers an XSS payload to the web application. This payload allows
the attacker to perform any action that the user would be able to
perform. A second-order attack, such as persistent XSS, may rely
on sending the XSS payload to a back-end database (e.g. through
usernames, comments, forum posts, etc.) that gets triggered once a
victim loads a webpage containing the relevant information. These
attacks are often used to steal sensitive information about a victim
such as credit card information, medical records, and/or cookie
details.
Distributed denial-of-service Distributed denial-of-service (DDoS)
occurs when a malicious user overwhelms a target resource with
super�uous tra�c, rendering the resource unable to respond to
legitimate tra�c in a timely manner [33]. It should be noted that
the super�uous tra�c comes from a wide variety of sources (i.e.
the “distributed” aspect), which makes it much more di�cult to
di�erentiate and block the multiple sources of such tra�c. This
attack is not speci�c to web applications, but it remains one of the
most common attack patterns due to its generality and e�ective-
ness. The primary purpose of a DDoS attack is to render a web
application inoperable, thereby disrupting its normal function and
inconveniencing its users. Some secondary purposes that directly
result from a DDoS attack include extortion, reputational damage,
and/or �nancial drain.
Nectar Network Nectar Network is a simple web application de-
veloped on top of DBOS. It serves as a rudimentary social network-
ing site and is publicly accessible at nectarnetwork.org. We made
Nectar Network publicly available in order to capture real-world
internet tra�c, thereby allowing us to test DBOS provenance cap-
ture and develop real-time anomaly detection using a realistic web
application deployment. All HTTP requests are logged and stored
in Vertica [21] using the �elds shown in Figure 5. This schema
loosely follows the W3C extended logging format as described by
Microsoft [44]. The format contains enough information to form a
complete history of an HTTP request.

BBPE Tokenization Embedding

HTTP Input Tokenized Input

Convolutional
Layers

Concatenated
Maxpool Layer

Fully Connected Layer
with Dropout and Softmax

Figure 6: BBPE CNN model architecture.

3.1 Model
Our model (Figure 6) has two basic components: tokenization and
classi�cation. The tokenization component uses byte-level byte pair
encoding (BBPE) to break down the input bytes into byte tokens that
hold semantic meaning. In the classi�cation step, a convolutional
neural network (CNN) takes the token bytes as input and outputs
the predicted probability of anomaly.
Byte-level Byte Pair Encoding Byte pair encoding (BPE) was
introduced as a method of compressing strings [10]. The technique
uses the characters of a string as tokens, and additionally adds
tokens representing the most common combinations of characters
present in a string. By doing so BPE is able to outperform Lem-
pel–Ziv–Welch compression in terms of compressed data size at the
cost of increased time for compression. Note that after tokenization,
there is a dictionary mapping seen characters to assigned tokens
known commonly as a vocabulary. Because BPE can tokenize a
string without loss of information, it can serve as a tokenizer for
language machine learning techniques [36]. The authors report
that this tokenization method serves well for vocabularies in which
there are very rare words and words that are out of vocabulary.
Byte-level byte pair encoding (BBPE) is a tokenization method that
builds on BPE but operates on bytes instead of characters [42]. This
is particularly powerful because BBPE guarantees that there will be
no unknown tokens. In the worst case, an input can be tokenized as
its individual bytes, meaning unique characters that have not been
seen before can still be tokenized. Since HTTP requests and other
machine code often includes unique characters, and in particular
injection attacks use unique characters to confuse web application,
this characteristic makes BBPE a strong choice for tokenizing our
HTTP requests.

Incoming HTTP requests are formatted into a single string
which includes all of the �elds separated by spaces. An example
string is “GET http://url.com/path HTTP/1.1 [User-Agent]
[Content-Length] ...”, inwhich ... represents additional HTTP
�elds. We then collect and use these to train the BBPE tokenizer.
Convolutional Neural Network (CNN) Once BBPE tokenizes
the HTTP request, the request is classi�ed by a CNN model. The
full architecture of the model is shown in Figure 6.
Token embeddings Earlier work [46] shows that learning embed-
ded tokens as part of the CNN works well for task-speci�c text
applications, such as detecting web attacks. This helps the learned
embedding relate more closely with the desired classi�cation, in
this case, whether an HTTP request is malicious. This stands in

6

Machine Learning with DBOS AIDB’22, September 5th, 2022, Sydney, Australia

Table 2: 5-fold cross-validation performance across datasets.

Dataset Accuracy Precision Recall F1 F1std
CSIC 0.999 0.999 0.998 0.998 4.95⇥10�4
Sigma 0.999 0.996 0.996 0.996 27.4⇥10�4
Nectar 0.999 0.999 0.999 0.999 2.26⇥10�4

contrast to embedding techniques such as Word2Vec, which aims to
learn the semantic meaning of tokens. While this makes sense for
actual languages, HTTP requests often lack this semantic meaning.
While some tokens are words, others might simply be characters
such as %20, the URL escape sequence for the space character.
Convolution layers For the convolutional layers, three kernel sizes
(2, 3, 4) were used. For each of these kernel sizes, 100 �lters were
used reaching a total of 300 �lters in this layer. Each of these layers
uses the ReLU activation function, a piecewise linear function that
returns positive values directly and negative values as zeroes. This
generates the possible feature map of the HTTP request.
Maxpooling layer This layer takes the maximum of each feature
map generated by the convolutional layers and concatenates them
into a single vector.
Dense layer The dense layer fully connects the maxpool layer to the
output layer to perform binary classi�cation. In addition, to avoid
over�tting during training, a dropout layer was included which
zeroed out inputs with a probability of ? = 0.2.
Output layer The output layer is a softmax layer with two nodes
corresponding to the problem classes, turning the activations from
the fully connected layer to class probabilities.

3.2 Model Evaluation
MetricsWe report the precision, recall, and F1 scores alongwith the
accuracy for our model’s performance across evaluation datasets
and conditions. Note that the accuracy score alone provides an
incomplete picture of performance, particularly when we have un-
balanced class distributions in datasets. For example, in the Nectar
Network dataset, a high proportion of events captured are malicious
in nature. As such, a classi�er could label all events as malicious
and still achieve a high accuracy due to the low total number of
non-malicious events.
Datasets We use three HTTP request datasets with di�erent char-
acteristics for our evaluation.
CSIC The CSIC dataset is a public benchmark [12], which earlier
methods of anomaly detection often used to report results. This
dataset consists of generated tra�c, and so the labels are known to
be accurate. We use this dataset to compare our mode with a select
sample of earlier work.
Sigma Computing The CSIC dataset is automatically generated and
fairly balanced. In real-world applications, this is rarely the case.
The Sigma Computing dataset contains anonymized HTTP logs at
Sigma Computing [5, 11], representing real-world activity. The logs
were labeled by Cloud�are. The majority of the tra�c logged is
benign in nature. Less than 4% of the events logged are malicious.

Table 3: Performance of our model on the CSIC dataset with
decreasing ratios of training data used in train-test splits.

% Train Accuracy Precision Recall F1
80% 0.998 0.997 0.997 0.997
50% 0.995 0.994 0.995 0.994
25% 0.985 0.969 0.994 0.982
10% 0.957 0.907 0.996 0.949
5% 0.953 0.946 0.938 0.942

Nectar Network This dataset consists of HTTP requests from Nectar
Network provenance capture which was labeled using the “Regis-
tered” ruleset for Snort v2.9.19. This ruleset contains 43,091 rules,
with any violations being logged and the corresponding entry being
labeled as anomalous. Entries with no rule violations were consid-
ered to be benign. Since the website is available for public access,
the majority of the tra�c it generated was from webcrawlers or
malicious users. As a result, the data is heavily weighted towards
events labeled as malicious, with only about 7% of the tra�c being
benign.
Baselines We compare our model with three top-performing mod-
els selected from the literature: HTTP2vec [13], Code Level CNN [17],
and SAE [41]. HTTP2vec also uses BBPE to tokenize the inputs, but
it obtains the token embeddings via RoBERTa [26] and feeds them
as input features to a support vector machine classi�er. Code Level
CNN uses a similar CNN architecture, but only tokenizes the inputs
based on special characters. SAE uses n-grams before extracting
features using a stacked autoencoder.
Results Table 2 shows the performance of our model measured
through a 5-fold cross-validation on all of the datasets. The results
reported are the averages over the 5 splits, along with the stan-
dard deviation of the F1 score. The model achieves high prediction
performance across all metrics and datasets.

Table 3 depicts how the performance of the model changes with
di�erent amounts of training data. While performance does de-
crease, it’s surprising just how well the model can do with only
5% (⇠3,000) examples to train on. This suggests that BBPE, which
is trained on the entire dataset, is doing the heavy lifting for rep-
resentation learning and making it easier for the CNN to learn a
proper classi�er. One possible instance of this lies in SQL injection
attacks, which often obscure their intent by using URL encoding.
%25 decodes as %, which is the URL escape character. This can be
exploited against poorly secured web applications. Since BBPE op-
erates at the byte level, it is able to recognize %25 as a unique token,
which gives the CNN a very easy way to identify this as a feature
of attacks.

Table 4: Performance of models on the CSIC dataset.

Method F1
BBPE CNN (ours) 0.998
HTTP2vec [13] 0.969
Code Level CNN [17] 0.963
SAE [41] 0.841

7

AIDB’22, September 5th, 2022, Sydney, Australia Redmond, Weckwerth, and Xia, et al.

Figure 7: User interface has three main views (pages): Overview, Search, and Stats. Users can navigate to these views by clicking
on the corresponding tabs (upper left). The default view is Overview.

Table 4 compares the performance of our model with the base-
lines on the CSIC dataset. Our model outperforms the best perform-
ing baseline by about 3% in F1 score.

3.3 User Interface
We develop an interactive visual analysis tool driven by our ML
model above. Our goal is twofold: to help security administrators to
further investigate predicted anomalies within the context of DBOS
provenance data, and to demonstrate an end-to-end utilization of
DBOS provenance tracking. We below focus on the user interface
of the tool and its evaluation.

The user interface has three main views (or pages), which can be
navigated through three corresponding tabs. The �rst tab (default
tab on launch) is the overview page (Figure 7), which allows the
user to apply various �lters to the provenance data for interactive
display. The second tab is the search page (Figure 9), which allows
the user to directly query the provenance data using SQL commands
as input. The third tab is the stats page (Figure 10), which allows
the user to visualize anomaly trends through a historical line graph
of detected anomalies.
Prioritizing Anomalies The goal of the overview page is to pro-
vide an interface for a user to �lter anomalies based on the available
logged �elds and an anomaly threshold. This allows for anomaly
prioritization based on the �ltering options selected. An example
of how this process is enacted can be seen in Figure 7. The left
sidebar speci�es the available �ltering options and the right main
content displays the output data table based on the selected �ltering
options.

The sidebar consists of two components; the anomaly threshold
and advanced search options. The anomaly threshold is a slider
between 0 to 1 that speci�es the minimum value of the predicted
label that should be displayed in the output data table. The ad-
vanced search view enables a user to easily �lter for any number
of HTTP �elds with associated values. The user can interactively
compose �ltering predicates using AND and OR to construct com-
pound �lters. The system converts interactively expressed search
�lters in this view into SQL commands, which are then shown in

the main content panel. For reference, the SQL command corre-
sponding to the �ltering options selected in Figure 7 is SELECT
LOG_TIMESTAMP, RAW_REQUEST, MODEL_LABEL, SNORT_LABEL
FROM HTTPLOG_REQUEST_LABELED WHERE MODEL_LABEL > 0.70
AND RAW_REQUEST LIKE
‘%�getRemoteAddr� : �81.174.251.27�%’ AND RAW_REQUEST
LIKE
‘%�getRequestURI� : �%index.php�%’ ORDER BY MODEL_LABEL.
For more complex searches (e.g., those based on nested conditions),
users can directly enter custom raw SQL queries in the search tab.

The data table shows a �ltered list of labeled entries in the data-
base. There are three columns that correspond to the “EntryID”,
“Predicted Label”, and “Snort Label”. The EntryIDs are the times-
tamps that correspond to unique HTTP requests. Importantly, each
timestamp is a clickable link that generates a popup containing the
raw HTTP �eld-value pairs in a human-readable format. Figure 8
displays a popup that results from clicking on the �rst EntryID from
the data table in Figure 7. Note that the value of “getRemoteAddr”
matches the input value of “81.174.251.27”, and the value of “ge-
tRequestURI” matches the input value of “%index.php”, in which
% denotes a wildcard character that represents zero or more char-
acters. The predicted label is the outputted probability from the

Figure 8: Popup displaying HTTP request information for a
particular entry.

8

Machine Learning with DBOS AIDB’22, September 5th, 2022, Sydney, Australia

Figure 9: Search page enables users to directly query the
provenance database.

previously described MLmodel that predicts anomalous Nectar Net-
work requests. The output is consistent with the anomaly threshold
option selected in the sidebar that corresponds to a minimum value
of 0.7.

The Snort label, generated by running a public Snort ruleset on
the data, is the ground truth used to train and evaluate the machine
learning model. Notably, new entries will only have a predicted
label with no available Snort label. By default, entries are sorted in
ascending order by the predicted label, but there are ascending and
descending sort options available for each column.
Investigating Anomalies The main function of the search page
is to enable the user to directly query the underlying Vertica prove-
nance database. This is done by inputting and executing arbitrary
SQL queries, which gives the �exibility needed to handle complex
investigations. An example SQL command has been executed and
displayed in Figure 9. The left sidebar speci�es user inputs and
options, and the main content panel displays the result of the SQL
query. The sidebar provides several features to facilitate the search
process. The top checkbox dictates whether the user text input
below should be cleared every time a new query is submitted. Im-
portantly, queries are not sanitized or modi�ed before submission.
The web application operates under the assumption that it is be-
ing used by a security administrator or other party with intimate
knowledge of the underlying Vertica provenance database schema.
An additional quality of life feature is that queries can be submitted
by either using the submit button or pressing the keyboard enter
button. Once a query has been submitted and displayed, a link is
generated under the history section with the exact text submitted.
This allows the user to easily resubmit a previous query by simply
clicking on the associated link. Note that the history only maintains
the previous 10 submissions, and each submission in the history is
unique. Repeatedly submitting the same query will simply result in
that query staying at the top of history.

The main panel of the search page (Figure 9) consists of the
table that results from the most recent query submitted by the user.
Importantly, the text of the most recent query is displayed in bold
above the table for ease of use. In the event of an invalid SQL query,
the web application handles it gracefully by displaying a two-entry
data table that consists of the problematic syntax as well as the
original query string.
Analyzing Historical Data The stats page provides a historical
view of anomalous behavior by visualizing aggregate anomalous

Figure 10: Stats page enables users to easily explore patterns
of anomalous activity across time.

activity over various timeframes and dates. The default settings
and associated line plot are shown in Figure 10. The left sidebar
speci�es all available user options, and the main content panel
displays the resulting line plot. There is no submit button as in the
other pages since the line plot reacts automatically to changes or
selections in the user options. This is simply because there are no
text inputs in the stats user options that would cause unnecessary
and excessive queries upon all textual changes whatsoever. Users
can use the historical view to recognize peaks in the number of
attacks that might point to a concerted attack e�ort or to understand
long-term trends in their security. The sidebar consists of only two
components: the anomaly threshold and the time unit. As in the
overview page, the anomaly threshold dictates the minimum value
at which predicted labels are considered to be truly anomalous. The
time unit has three options: day, hour, and minute. The time unit
indicates the granularity at which anomalies should be aggregated
and displayed in the line plot.

The main view displays an interactive line plot with the selected
user options. Users can select and magnify subsections of the line
graph with brushing. Similarly, users can mouse hover the line
graph data points and see the corresponding tuple of the exact date
and number of detected anomalies in a tooltip. Overall, users can
download the plot, zoom freely, pan, zoom in, zoom out, autoscale,
reset axes, show the closest data on hover, and compare data on
hover.

3.4 User Interface Evaluation
Throughout the development of the application, we actively sought
out user feedback to improve the application design and better
understand the needs of target users. We conducted a longitudinal
study involving �ve industry professionals. We collected feedback
through two consecutive studies, a formative (initial) study carried
out at the beginning of the development and a summative (�nal)
study at the end, using an identical protocol. The participants were
given a brief explanation of the purpose of the web application as
well as a live demonstration of its main features at the time. After
each view was described and displayed in its entirety, each user was
allowed to freely explore the view to their satisfaction. Afterward,
they were given view-speci�c questions (Table 5) to evaluate the
key aspects of views such as functionality, aesthetics, and ease of
use. Our participants were asked to give numeric scores between
1 (strongly disagree) to 5 (strongly agree) for each question. They
were also given an open-ended prompt at the end of each survey
to provide general feedback and suggestions.

9

AIDB’22, September 5th, 2022, Sydney, Australia Redmond, Weckwerth, and Xia, et al.

Table 5: Survey questions. We elicited responses for twelve
view-speci�c questions, four per view.

View (Page) Question

Overview

Q1 How well do you feel you can prioritize anomalies based
on the available sidebar options?

Q2 Does the data table display relevant anomaly informa-
tion clearly and e�ectively?

Q3 Would you consider the layout of the page to be well-
organized and aesthetically pleasing?

Q4 Is it simple and easy to use the provided interface to
produce your desired output?

Search

Q5 How well do you feel you can investigate anomalies
based on the available sidebar options?

Q6 Does the data table display relevant anomaly informa-
tion clearly and e�ectively?

Q7 Would you consider the layout of the page to be well-
organized and aesthetically pleasing?

Q8 Is it simple and easy to use the provided interface to
produce your desired output?

Stats

Q9 How well do you feel you can understand historical
anomaly trends based on the available sidebar options?

Q10 Does the line plot display relevant anomaly information
clearly and e�ectively?

Q11 Would you consider the layout of the page to be well-
organized and aesthetically pleasing?

Q12 Is it simple and easy to use the provided interface to
produce your desired output?

Initial Study The initial study was performed to gather formative
feedback on the general functionality, design, and implementation
of the system. Figure 11 shows the aggregate scores (green) given
by the participants after the guided, live demonstration, and free
exploration process of each page. Scores were generally above
average, but there were some poorer ratings in the overview and
search pages that warranted further development. The general
feedback regarding both views was that the data table returned by
queries was relatively cluttered and lacking in functionality. At the
same time, the limited number of available side options in both
pages made it di�cult to truly prioritize or investigate anomalies
in depth.

We implemented several changes based on the initial study to im-
prove the user interface and general functionality of the application.
In particular, we implemented a new data table rendering to sup-
port search options within the table itself as well as column-speci�c
sorting options (ascending or descending order). At the same time,
we removed the column showing the HTTP �eld-value pairs as
plain text as another in the overview page. Instead, we used the
timestamps as unique entry IDs with clickable links. When clicked
on, these links produced popups that displayed HTTP �eld-value
pairs in a standard table format, making it much more accessible.
With respect to the overview sidebar options, the advanced search
options were added to let users �lter based on any of the �elds in
the HTTP requests. This enables users to quickly and e�ciently
dive into only the requests they’re interested in. With respect to the

Survey Question

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
at
in
g

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Initial
Final

Study

Overview
Search
Stats

View

Figure 11: User feedback from the initial and �nal studies.
The �nal feedback is promising and represents a consistent
improvement (higher means and lower variances) over the
initial feedback across all survey questions.

search sidebar options, the unique history provided a much needed
quality of life improvement that made investigations much simpler
and easier. Users can now recall a previously executed query to see
the result again or to make small edits to the query as they explore
the data. Additionally, the line plot in the stats page was replaced
and rendered using the Plotly package [32] rather than ggplot. This
allowed for interactive features including panning, zooming, and
brushing incorporated directly into the plot itself.
Final Study The summative study was performed after incorpo-
rating the user feedback from the initial study as we discussed
above. Figure 11 shows aggregate responses (purple) obtained from
our participants in the �nal study. Results represent a signi�cant
improvement over the initial evaluation, suggesting our revisions
on the user interface and the underlying functionalities have been
e�ective.

4 CONCLUSION
DBOS facilitates ML applications by supporting the following three
principles.
(1) A DBMS for ML applications is a very good idea. The model
and all ancillary data should be DBMS-based, for easy querying
and versioning. The DBOS design highly encourages this mode of
thinking.
(2) Co-locating data and computation is a very good idea.
Whenever possible, DBOS co-locates computation and data. Any-
thing coded in our programming environment [23] supports this,
and many ML operations can be done this way, resulting in a signif-
icant performance speedup. Machine learning on specialized hard-
ware cannot leverage co-location; however, DBOS performance
using accelerators is similar to that of existing approaches.
(3) Automatic provenance support is a very good idea. Not
only does this facilitate backing up an ML project so a di�erent
path forward can be tried, but also monitoring/real-time/security
ML applications can run directly o� the provenance data as we
showed in this paper.

In summary, ML applications are data intensive and model evolu-
tion can bewell supported by a versioning system. Such applications
bene�t from the DBOS architecture, and we expect these ideas will
become more prevalent in the future.

10

Machine Learning with DBOS AIDB’22, September 5th, 2022, Sydney, Australia

REFERENCES
[1] 2014. Amazon Web Services Announces AWS Lambda. https:

//press.aboutamazon.com/news-releases/news-release-details/amazon-
web-services-announces-aws-lambda.

[2] 2021. Sypse: Privacy-�rst Data Management through Pseudonymization and
Partitioning., author=Deshpande, Amol. In 2021 Conference on Innovative Data
Systems Research (CIDR’21).

[3] Wade Baker, Mark Goudie, Alexander Hutton, C. David Hylender, Jelle Nie-
mantsverdriet, Christopher Novak, David Ostertag, Christopher Porter, Mike
Rosen, Bryan Sartin, and Peter Tippett. 2010. 2010 Data Breach Investigations
Report.

[4] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geo� Keeling, Fereshte Khani, Omar Khattab, Pang Wei Kohd, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the Opportunities
and Risks of Foundation Models. arXiv:2108.07258 [cs.LG]

[5] Sigma Computing. 2018–2022. Sigma Computing. https://sigmacomputing.com.
[6] JimConallen. 1999. ModelingWebApplicationArchitectureswith UML. Commun.

ACM 42, 10 (1999), 63–70. https://doi.org/10.1145/317665.317677
[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-

geNet: A Large-Scale Hierarchical Image Database. IEEE Conference on Computer
Vision and Pattern Recognition (2009).

[8] Admir Dizdar. 2022. SQL Injection Attack: Real Life Attacks and Code Examples.
[9] Karim Djemame, Matthew Parker, and Daniel Datsev. 2020. Open-source Server-

less Architectures: an Evaluation of Apache OpenWhisk. In 13th IEEE/ACM
International Conference on Utility and Cloud Computing, UCC 2020, Leicester,
United Kingdom, December 7-10, 2020. IEEE, 329–335. https://doi.org/10.1109/
UCC48980.2020.00052

[10] Phillip Gage. 1994. A New Algorithm for Data Compression. The C User Journal.
[11] James Gale, Max Seiden, Deepanshu Utkarsh, Jason Frantz, Rob Woollen, and

Çağatay Demiralp. 2022. Sigma Workbook: A Spreadsheet for Cloud Data Ware-
houses. arXiv preprint arXiv:2204.03128 (2022).

[12] Carmen Torrano Giménez, Alejandro Pérez Villegas, and Gonzalo Álvarez
Marañón. 2010. HTTP dataset CSIC 2010. https://www.tic.ite�.csic.es/dataset/

[13] Mateusz Gniewkowski, Henryk Maciejewski, Tomasz R. Surmacz, and Wiktor
Walentynowicz. 2021. HTTP2vec: Embedding of HTTP Requests for Detection
of Anomalous Tra�c. CoRR abs/2108.01763 (2021). arXiv:2108.01763 https:
//arxiv.org/abs/2108.01763

[14] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Polyzotis,
Sudip Roy, and Steven EuijongWhang. 2016. Goods: Organizing google’s datasets.
In Proceedings of the 2016 International Conference on Management of Data. 795–
806.

[15] TensorFlow Hub. 2022. (2022). https://tfhub.dev/google/tf2-preview/mobilenet_
v2/feature_vector/4/

[16] TensorFlowHub. 2022. (2022). https://tfhub.dev/tensor�ow/centernet/hourglass_
512x512/1/

[17] Ines Jemal, Mohamed Amine Haddar, Omar Cheikhrouhou, and Adel Mah-
foudhi. 2020. Malicious Http Request Detection Using Code-Level Convolu-
tional Neural Network. In Risks and Security of Internet and Systems - 15th In-
ternational Conference, CRiSIS 2020, Paris, France, November 4-6, 2020, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 12528), Joaquín García-
Alfaro, Jean Leneutre, Nora Cuppens, and Reda Yaich (Eds.). Springer, 317–324.
https://doi.org/10.1007/978-3-030-68887-5_19

[18] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simpli�ed: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[19] Andrej Karpathy. 2017. Software 2.0. https://medium.com/@karpathy/software-
2-0-a64152b37c35. Accessed: 2022-05-27.

[20] Deeptaanshu Kumar, Qian Li, Jason Li, Peter Kraft, Athinagoras Skiadopoulos,
Lalith Suresh, Michael J. Cafarella, and Michael Stonebraker. 2021. Data Gov-
ernance in a Database Operating System (DBOS). In Heterogeneous Data Man-
agement, Polystores, and Analytics for Healthcare - VLDB Workshops, Poly 2021
and DMAH 2021, Virtual Event, August 20, 2021, Revised Selected Papers (Lecture
Notes in Computer Science, Vol. 12921), El Kindi Rezig, Vijay Gadepally, Timothy G.
Mattson, Michael Stonebraker, Tim Kraska, Fusheng Wang, Gang Luo, Jun Kong,
and Alevtina Dubovitskaya (Eds.). Springer, 43–59. https://doi.org/10.1007/978-
3-030-93663-1_4

[21] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7
Years Later. Proc. VLDB Endow. 5, 12 (2012), 1790–1801. https://doi.org/10.14778/
2367502.2367518

[22] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. (2010).
http://yann.lecun.com/exdb/mnist/

[23] Qian Li, Peter Kraft, Kostis Ka�es, Athinagoras Skiadopoulos, Deeptaanshu Ku-
mar, Jason Li, Michael Cafarella, Goetz Graefe, Jeremy Kepner, Christos Kozyrakis,
et al. 2022. A Progress Report on DBOS: A Database-oriented Operating System.
In 2022 Conference on Innovative Data Systems Research (CIDR’22).

[24] Xiaowei Li and Yuan Xue. 2014. A survey on server-side approaches to securing
web applications. ACM Comput. Surv. 46, 4 (2014), 54:1–54:29. https://doi.org/10.
1145/2541315

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
2014. Microsoft COCO: Common Objects in Context. (2014).

[26] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[27] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. Modelhub: Deep
learning lifecycle management. In ICDE.

[28] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I
Seltzer. 2006. Provenance-aware storage systems.. In Usenix annual technical
conference, general track. 43–56.

[29] Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked Hourglass Networks
for Human Pose Estimation. (2016).

[30] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. TensorFlow-
Serving: Flexible, High-Performance ML Serving. NIPS 2017 Workshop on ML
Systems (2017).

[31] Google Cloud Platform. 2022. (2022). https://cloud.google.com/
[32] Plotly. 2012–2022. Plotly. https://plot.ly.
[33] Amit Praseed and P. Santhi Thilagam. 2019. DDoS Attacks at the Application

Layer: Challenges and Research Perspectives for Safeguarding Web Applications.
IEEE Commun. Surv. Tutorials 21, 1 (2019), 661–685. https://doi.org/10.1109/
COMST.2018.2870658

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. IEEE
Conference on Computer Vision and Pattern Recognition (2018).

[36] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer
Linguistics. https://doi.org/10.18653/v1/p16-1162

[37] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Ka�es, Daniel Hong, Shana
Mathew, David Bestor, Michael Cafarella, Vijay Gadepally, Goetz Graefe, Jeremy
Kepner, Christos Kozyrakis, Tim Kraska, Michael Stonebraker, Lalith Suresh, and
Matei Zaharia. 2021. DBOS: A DBMS-Oriented Operating System. Proc. VLDB
Endow. 15, 1 (sep 2021), 21–30. https://doi.org/10.14778/3485450.3485454

[38] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main Memory DBMS.
IEEE Data Eng. Bull. 36, 2 (2013), 21–27. http://sites.computer.org/debull/A13june/
VoltDB1.pdf

[39] Princeton University. 2010. About WordNet. (2010).
[40] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,

Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: a system
for machine learning model management. In Proc. HILDA.

[41] Ali Moradi Vartouni, Saeed Sedighian Kashi, and Mohammad Teshnehlab. 2018.
An anomaly detection method to detect web attacks using Stacked Auto-Encoder.
In 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). 131–134.
https://doi.org/10.1109/CFIS.2018.8336654

11

AIDB’22, September 5th, 2022, Sydney, Australia Redmond, Weckwerth, and Xia, et al.

[42] Changhan Wang, Kyunghyun Cho, and Jiatao Gu. 2020. Neural Machine Transla-
tion with Byte-Level Subwords. In The Thirty-Fourth AAAI Conference on Arti�cial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Arti�cial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Ad-
vances in Arti�cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020.
AAAI Press, 9154–9160. https://ojs.aaai.org/index.php/AAAI/article/view/6451

[43] Peter Warden. 2017. Deep Learning is Eating Software. https://petewarden.com/
2017/11/13/deep-learning-is-eating-software/. Accessed: 2022-05-27.

[44] StevenWhite, Jason Martinez, David Coulter, Drew Batchelor, Alex Laforge, Mike
Jacobs, and Michael Satran. 2021. W3C Logging. https://docs.microsoft.com/en-
us/windows/win32/http/w3c-logging.

[45] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,

et al. 2018. Accelerating the machine learning lifecycle with ML�ow. IEEE Data
Eng. Bull. (2018).

[46] Ming Zhang, Boyi Xu, Shuai Bai, Shuaibing Lu, and Zhechao Lin. 2017. A
Deep Learning Method to Detect Web Attacks Using a Specially Designed CNN.
In Neural Information Processing - 24th International Conference, ICONIP 2017,
Guangzhou, China, November 14-18, 2017, Proceedings, Part V (Lecture Notes in
Computer Science, Vol. 10638), Derong Liu, Shengli Xie, Yuanqing Li, Dongbin
Zhao, and El-Sayed M. El-Alfy (Eds.). Springer, 828–836. https://doi.org/10.1007/
978-3-319-70139-4_84

[47] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. 2019. Objects as Points.
(2019).

12

