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ABSTRACT

We present significant new development of the Automatically Scalable Compu-

tation (ASC) project, a new method of automatic parallelization that transforms

parallelization into a machine learning problem. ASC speeds up computation by

predicting future states of a program’s memory and registers and speculatively exe-

cuting from those predicted states. Prior work on ASC has demonstrated the ability

to speed up a limited class of programs using a single additional core. It has also

suggested that ASC has the potential to scale that speedup to many cores for a

larger class of programs. We realize that potential by developing a new version of

ASC. Our version incorporates a new architecture that can scale to many cores as

well as a notion of data dependency that expands the class of programs ASC can

speed up by making the prediction problem much easier. Using this new version of

ASC, we demonstrate automatic speedup on a large class of programs, including

programs essential to scientific computing and programs resistant to other methods

of automatic parallelization. This speedup increases near-linearly with the number

of cores supplied to ASC.
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1 INTRODUCTION

1.1 PARALLELIZATION AND ASC

One of the most important problems in computer science is parallelization. Almost
all modern computers contain several execution engines, called cores. In theory,
most computationally expensive programs can be run on multiple cores simulta-
neously and will run faster as they use more cores. However, in reality, writing
programs that use multiple cores efficiently is much more challenging than writing
traditional programs that use only a single core. This problem is called the problem
of parallelization, and programs that are able to use multiple cores simultaneously
are called parallel programs (as they must perform computations in parallel on
multiple cores).

Because parallel programming is difficult, most programmers write programs
that are sequential, meaning they can use only a single core. This is extremely in-
efficient as it means auxiliary cores are wasted, their processing power completely
unused. Given the prevalence of multicore computers, it is crucial to develop ways
to make it as easy as possible for programs to fully exploit multiple cores. This
will allow programs to make use of future developments in computer architecture,
since these developments will likely lead to more cores, not faster cores.

The holy grail of parallelization research is automatic parallelization. Auto-
matic parallelization is the automatic transformation of a sequential program into
a parallel one. Automatic parallelization allows programmers to have their cake
and eat it too—they can write code that is sequential, and therefore easy to write,
but still have it run as fast as parallel code. This thesis presents developments to
an automatic parallelization project, Automatically Scalable Computation (ASC).
ASC uses prediction and speculative execution to allow an unmodified sequential
binary program to exploit multiple cores and run faster than it would on a single
core (Waterland et al., 2014). We improve ASC significantly, allowing it to speed
up more types of programs and also produce more speedup in programs.

The central idea of ASC is the program state, defined as the values of the indi-
vidual bits in a program’s memory and registers. ASC monitors running programs
and extracts their states. It then builds a machine learning model to make predic-
tions about potential future states of the program. Next, ASC has auxiliary cores
speculatively execute from the predicted future states. ASC then creates a cache
that maps between these predicted states and later states (called speculated states)
resulting from execution of the predicted states. If the main thread of the program
ever realizes that its current state is identical to one of the predicted states in the
cache, it can instantly update its current state to the speculated state corresponding
to the end state of speculative execution from the predicted state, fast-forwarding it-
self into the future and taking advantage of computation done on an auxiliary core.
By continuously repeating this cycle of prediction, speculative execution, caching,
and fast-forwarding, ASC can allow a single-threaded program to take full advan-
tage of multiple cores (Waterland et al., 2014). We diagram this in Figure 1.
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Figure 1: The main cycle of ASC. ASC extracts states from the main process. The ma-
chine learning model then predicts future states of the main process from the extracted
states. The workers speculatively execute from the predicted states on auxiliary cores, stor-
ing pairs of predicted and speculated states in the cache. If the main process ever enters
a cached predicted state, it fast-forwards to the corresponding speculated state, speeding
itself up.

1.2 VERSIONS OF ASC

Before we began our work, two implementations of ASC existed—a simulated
version and a bare-metal version. Both implement the predict-speculate-cache-
fast-forward cycle described above. However, their execution engines differ. The
simulated version is described in Waterland et al. (2014), where it is named the
Learning-based Automatically Scalable Computation (LASC) system. LASC is a
simulator that implements 79 opcodes of the 32-bit x86 instruction set. It executes
free-standing binary programs compiled with gcc restricted to those opcodes. As
a simulator, it executes binaries orders of magnitude more slowly than native ex-
ecution. As a result, while LASC was an extremely useful proof-of-concept for
demonstrating that the core ASC concepts could work, it could not produce true
speedup and could run only a small number of programs.

To improve on LASC, the “bare-metal version” of ASC was created. The
bare-metal version of ASC does not contain a simulator. Instead, it runs target
programs directly on bare metal and controls their execution through the ptrace
API and through direct memory access. As a result, unlike LASC, it can speed
up real programs. Full details of how the bare-metal version operates are given in
Section 3. In the remainder of this paper, we discuss the bare-metal version and
our new version of ASC, which is based on it, unless otherwise noted.

1.3 ASC PREDICTIONS

The most important requirement of ASC is the ability to make accurate predictions
about future states of its target program. If ASC can make accurate predictions,
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it can use them to run simultaneous speculative executions on an arbitrarily large
number of auxiliary cores. ASC can then use the results of these speculations to
fast-forward the target program far into the future, thus automatically speeding it
up by an amount scaling near-linearly with the number of cores. Producing this
speedup is the primary goal of ASC. However, it requires accurate predictions.
Therefore, the most important problem confronting ASC is the problem of making
more accurate predictions. If this can be achieved, everything else follows natu-
rally.

There are two ways to improve ASC’s prediction capabilities. The most obvi-
ous way is to improve the machine learning model. This can be effective in some
cases. However, because time spent predicting is time not spent speculating, pre-
diction speed is a harsh constraint on the model. Moreover, improving the model
is for many programs futile because their states contain bits that are fundamentally
unpredictable, often because they are set by complex calculations.

The other, and typically better, way to improve ASC’s prediction capabilities
is to reduce the number of bits that ASC needs to predict correctly. This is possible
because ASC needs only correctly predict bits whose values affect the speculation.
These bits are often a small subset of the overall program state. For example, as
we show in Section 5, speeding up a matrix multiplication program requires only
correctly predicting 150 bits (mostly in loop counters or the flags registers) out of
many billions. In an ideal world, ASC would know the exact subset of the program
state that a speculation depends on, predict only those bits, and ignore the rest.
This is not always possible, of course, but any progress towards that ideal will both
improve ASC’s effectiveness and enlarge the class of programs it can speed up.

As an example of how the bits on which a calculation depends can be a small
and easy-to-predict subset of the program state, consider a simple program that
squares every element of an array (Listing 1). The overall program state contains
a large number of bits that are relatively hard to predict, such as the results of the
squaring operations. It also contains some bits that are relatively easy to predict,
such as the loop counter. The squaring operations depend only on the latter; the
value of the square of the second number in an array does not change based on
the value of the square of the first number. Therefore, the only bits ASC needs to
predict correctly are those in the loop counter, which are trivial to predict and form
a tiny subset of the overall state. The challenge lies in identifying those bits and
communicating them to ASC.

void square_array(int* A, int* B, int array_len) {
for(int i = 0; i < array_len, i++)

B[i] = A[i] * A[i];
}

Listing 1: A simple squaring function that fills array B with the squares of the
integers in array A. Each loop iteration changes two values: the loop counter i and an
entry B[i] in B. The latter is much harder to predict than the former, but ASC only
needs to accurately predict the former to usefully speculate.
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Waterland et al. (2014) were fully aware of the need to minimize the number
of bits that ASC needs to predict correctly. They also recognized that the only bits
that could affect a computation were the bits read during that computation. As a
result, they used the LASC simulator to keep track of every memory location a
program reads from during computation and convey that information to ASC so it
knows only those bits need be predicted correctly. This idea, which massively re-
duces the number of bits ASC needs to predict correctly, is called data dependency
tracking. However, this tracking is only possible because of the simulator; as a
result, it does not exist in the bare-metal version of ASC.

1.4 GOALS AND CONTRIBUTIONS

Given the importance of improving ASC’s prediction capabilities by reducing the
number of bits ASC needs to predict, our primary contribution is to develop a
new version of ASC based on the bare-metal version that performs data depen-
dency tracking. This is an extremely important step because the data-dependency
tracking in LASC was only possible because of the simulator, and was thus fun-
damentally incapable of being used in a real program to achieve real speedup. We
demonstrate that data-dependency tracking on real programs running on real com-
puters is realistic. Our new version of ASC has the ability to determine which bits
are read from during a computation and recognize those are the only bits that need
to be predicted correctly for valid speculation. By doing this, we greatly expand the
range of programs ASC can speed up and achieve substantial speedup on several
programs ASC could never speed up before.

Specifically, to implement data dependency tracking, we build a tool that runs
on top of Pin, Intel’s dynamic instrumentation package for x86 (Luk et al., 2005).
This tool monitors a program while it is running and executes instrumentation code
that keeps track of every memory location the program reads from and writes to
during a computation. It then conveys that information to ASC. This allows ASC
to know which bits are read from during a computation and therefore which bits it
needs to predict correctly.

In addition to developing data dependency tracking, we implement a vari-
ety of systems within ASC that improve its function and ability to speed up pro-
grams in various ways. The first of these is a new, more flexible machine learning
model. Data dependency tracking requires adapting which bits are predicted based
on which bits need to be predicted. The machine learning model built into the
bare-metal version of ASC, a neural net, made doing this difficult. Moreover, its
prediction speed scales extremely poorly with the number of bits. Therefore, we
developed a new machine learning model based on decision trees that did not have
these disadvantages.

We also develop a new cache and scheduler for ASC that allow it to simulta-
neously manage a large number of worker processes and therefore scale speedup
to a large number of cores. The bare-metal version of ASC only supported a single
worker process. This means that it could only exploit a single auxiliary core. If
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given a machine with more cores, it could not use them. Given that ASC’s pri-
mary goal is producing near-linear speedup of programs by exploiting large num-
ber of cores, this was extremely problematic. Therefore, we developed a system to
manage many worker processes, scheduling them so all workers were always per-
forming useful speculation and caching their results so speculations from accurate
predictions could be exploited as necessary.

Our new system is able to achieve substantial speedup on a variety of pro-
grams, including several that are essential to scientific computing. We also show
that ASC is capable of automatically memoizing programs that are amenable to
memoization, thus achieving superlinear scaling where other automatic paralleliza-
tion systems could not. Our predictors are also capable of finding patterns that al-
low parallelization of certain types of programs, such as linked list traversal, that
other automatic parallelization systems struggle with.

In the remainder of this paper, we further motivate and present these systems,
then report their performance. In Section 2, we discuss related work that motivated
and inspired ASC. In Section 3, we go into further detail about how the bare-
metal version of ASC operates and how its component systems act and interact.
In Section 4, we describe the operation and implementation of our new version of
ASC. In Section 5, we report on the results of these new systems with particular
focus on speedup and scaling on a variety of target programs. In Section 6, we
conclude the paper and investigate the implications of these results on the future of
ASC.

2 RELATED WORK

The goal of ASC is automatic parallelization of single-threaded code. As a result,
ASC shares history with and has drawn ideas from a large body of previous work.
This work can be divided into two broad categories. The first of these is compiler
parallelization, which compiles single-threaded source code to a multi-threaded bi-
nary. The other is binary parallelization, which automatically parallelizes a single-
threaded binary. Both categories can be further subdivided into static and dynamic
parallelization. Static parallelization transforms a single-threaded source or binary
into a multi-threaded binary. Dynamic parallelization speeds up a single-threaded
binary (sometimes unmodified, sometimes specially compiled or transformed) at
runtime by using additional cores. Out of all these categories, ASC is best classi-
fied as a dynamic binary parallelization system.

2.1 COMPILER PARALLELIZATION

The most traditional method of automatic parallelization is static compiler paral-
lelization. This can take different forms. One approach is to not automatically
parallelize at all, but to make it as easy as possible to parallelize manually. One
example for C/C++ is OpenMP, which uses pragmas to provide an API to the com-
piler to indicate opportunity for parallelization. If one’s program contains a paral-
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lelizable loop, one can simply indicate this with a pragma and OpenMP will do the
difficult work of parallelizing it (Dagum and Menon, 1998). This is not automatic,
but it is effective for code written in the right languages with clearly paralleliz-
able computations. A related example is Cilk, a superset of C/C++ that introduces
keywords for forking and joining threads and implements a scheduler to use them
(Blumofe et al., 1995). Like OpenMP, Cilk will not parallelize automatically, but
it enables extremely scalable parallelization of certain constructs with only a few
lines of code.

Beyond parallelization libraries, researchers have also developed truly auto-
matic static compiler parallelization. In its most basic form, automatic static com-
piler parallelization involves recognizing and multithreading loops whose itera-
tions do not depend on each other or depend on each other in simple, parallelizable
ways. This has proven highly successful at automatically parallelizing programs
that exhibit regular data access patterns that can easily be statically inferred from
the source code (Blume et al., 1994). However, that restriction is extremely limit-
ing and leads to extremely conservative parallelization (Mehrara, 2011). Too many
parallelizable programs lack enough regular structure to easily parallelize, and par-
titioning most programs into concurrent threads with no pragmas or directives is
extremely difficult (Hertzberg, 2009).

To overcome these limitations, thread-level speculation (TLS) was developed.
TLS involves parallelizing code with ambiguous dependencies by making certain
assumptions about the dependencies, then using hardware to check at runtime
whether those assumptions were correct. If they are, the speculations are used,
if not, they are not (Steffan et al., 2000). Similar to TLS is hybrid analysis, pro-
posed by Rus et al. (2003), which performs relatively liberal static analysis then
does runtime failsafe checking. Both these techniques are similar to ASC in that
they involve making speculations and using them only if they are correct, but re-
tain a limiting dependence on static analysis and, in the case of TLS, on specialized
hardware.

A variety of other hybrid approaches have been created that use both compil-
ers and dynamic analysis. One approach is to pipeline loops into separate threads
that do not have cyclic dependencies, sometimes with the help of software transac-
tional memory (Raman et al., 2010). This is unpredictable due to the complexity
of the pipelining transformation, though, and can just as easily slow a program
down as speed it up. Another technique, and the one most similar to ours, is to
have the compiler parallelize a loop while dynamically transmitting information
about data dependency between cores to guarantee synchronization and correct-
ness. This was implemented by Campanoni et al. (2012) for the HELIX project.
Like our approach, HELIX can parallelize a variety of programs. However, it re-
mains dependent on static analysis, and thus regular data access patterns, and it can
easily be crippled by communication overhead.
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2.2 BINARY PARALLELIZATION

The limitations of compiler parallelization have inspired a variety of alternatives
that operate directly on binaries, whether statically or dynamically. Binary paral-
lelizers lose access to sometimes-valuable semantic information contained within
source code. In exchange, they also lose their dependency on having the source
code and, if they are dynamic, gain access to runtime information.

The variety of binary parallelization techniques is, if anything, even greater
than the variety of compiler parallelization techniques. One approach is direct
binary translation, which transforms the sequential binary into a paralellized bi-
nary. This has many of the same advantages and disadvantages as static compiler
parallelization—it is extremely powerful when it works (even more so than com-
piler parallelization, as it does not require the source code and has access to the
library binaries), but does not work on many programs due to the limits of static
analysis (Kotha et al., 2010). A closely related technique is slicing, which uses
static analysis of data flow to divide a program into parallel slices while using
speculation to work around rare dependencies (Wang et al., 2009).

Alternatively, dynamic binary parallelization techniques abandon static analy-
sis altogether. One of the first examples of this work is Dynamo (Bala et al., 2000).
Dynamo did not actually do parallelization at all; it was an optimizer that identi-
fied critical sections in code as it ran and made them faster. However, it inspired
work such as Yang et al. (2011), that monitors program exection for frequently-
executed hot traces which can be parallelized as they reappear. Such approaches
share ASC’s predict-speculate-fast-forward paradigm, but are limited by their re-
liance on hot traces alone, unlike ASC’s predictions.

2.3 DYNAMIC INSTRUMENTATION

Our data dependency tracking for ASC determines which bits a program reads
from or writes to during a computation. Analyzing a program’s operation to obtain
information like this is an important problem that has been approached in many
different ways. One possibility is full transformation, where the code is translated
to an intermediate representation before being run on a virtual machine or simula-
tor. The most prominent example of this sort of binary instrumentation is Valgrind
(Nethercote and Seward, 2007). Using a virtual machine makes instrumentation
much easier, as one can simply have the virtual machine record whatever it is sim-
ulating. For that reason, it was the approach taken by LASC (Waterland et al.,
2014). However, the tradeoff for this ease of instrumentation is poor performance.
Valgrind is in the best case four or five times slower than native code and is much
worse with extensive instrumentation, while LASC is multiple orders of magnitude
slower than native. The bare-metal version of ASC was developed in large part to
avoid these performance compromises.

Another approach to instrumentation, and the one we adopt, is to use an ex-
tremely lightweight just-in-time compiler (JIT) to run the binary code and insert
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instrumentation as appropriate. Prominent examples of this are DynamoRio, de-
veloped by Bruening et al. (2003) (and based off of Dynamo) and Pin, developed
by Luk et al. (2005). Both tools have extremely low base overhead (on the or-
der of 10% for DynamoRio and 30% for Pin) because of the optimization of their
JITs and both allow the insertion of a wide range of instrumentation and analysis
code into target binaries. We chose to use Pin due to its more powerful API and
instrumentation capabilities. We further describe Pin and our Pintool in Section
3.5.

3 BACKGROUND

In this section we describe the fundamental components of ASC, describe the im-
plementation of the bare-metal version of ASC, and provide an overview of Pin.
We first discuss some of the core ideas and terminology in ASC. Then, we detail its
components and operations. Next, we describe how these systems work together to
produce speedup. Finally, we discuss the Pin instrumentation system that we use
to track data dependencies.

3.1 INITIALIZATION OF ASC

The bare-metal version of ASC simultaneously manages a main process and sev-
eral worker processes. The main process is the target program that ASC speeds
up. The workers are alternative instances of that program running on different
cores starting from predicted states. ASC begins operation by launching them all
normally as children with fork and exec. Next, ASC calls ptrace on each
process. ptrace is a Linux system call that allows one process (ASC itself) to
control another (the main process or a worker). It is most commonly used in de-
buggers. ASC uses ptrace to set breakpoints in the processes it controls and read
and replace the contents of those processes’ registers.

After instrumenting the main process and workers with ptrace, ASC sets
the ptrace breakpoints. ASC sets the breakpoints to a specific presupplied target
instruction pointer. The target instruction pointer breakpoint serves as a reference
from which predictions will be made and cache lookups will be conducted. Ev-
ery time the main process’s execution reaches the breakpoint, ASC checks if the
main process’s state corresponds to a cache entry and fast-forwards the main pro-
cess to the corresponding speculated state if it does. Then, ASC predicts the main
process’s state at future instances of the breakpoint and has worker processes spec-
ulatively execute from those predictions when they reach their breakpoints. This
cycle is discussed in more detail in Section 3.3. Because the breakpoint is so impor-
tant to ASC’s operation, it must be on an instruction that the main process executes
regularly during computation (but not too regularly, or overhead will be excessive).
Optimal breakpoints are found manually for simpler programs and with the aid of
Gaussian processes for more complex ones.
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3.2 COMPONENTS OF ASC

Once all processes are initialized and instrumented, ASC is ready to begin operat-
ing. To better explain ASC’s operation, we first describe its three key components:
the machine learning model, the cache, and the scheduler:

• The machine learning model makes predictions about future states of the
main process. The model takes as input the current state of the main process
and returns as output a prediction of the state of the main process the next
time it reaches the breakpoint.

• The cache caches correspondences between predicted and speculated states.
A predicted state is a state predicted by the machine learning model, while
a speculated state is a state generated by speculative execution from a pre-
dicted state on a worker process. The main process can look up its current
state in the cache and a hit returns the (speculated) state of the next break-
point.

• The scheduler determines from which (predicted) state the machine learning
model should speculate. It uses the machine learning model to make pre-
dictions arbitarily far into the future to ensure that all workers are executing
from different predicted states so they can all add new and useful entries to
the cache.

Maintaining these data structures requires ASC to perform two key opera-
tions, gathering and scattering. Gathering and scattering are equivalent to reading
states from processes and writing them to processes, respectively. They make use
of the ptrace API as well as direct memory access. Direct memory access is a
system implemented in bare metal and supported by Linux that allows a process to
access main memory independent of the CPU. ASC uses it to rapidly read from or
write to a child process’s memory while allowing the CPU to do other useful work.
To be more explicit:

• Gathering is the copying of a program’s memory and register values into a
buffer, called a state vector. The registers are copied into the buffer using
the ptrace API, while the memory values are copied using direct memory
access.

• Scattering is the copying of memory and register values from a buffer, called
a state vector, into a program. Scattering replaces memory and register val-
ues of the program with corresponding values from the state vector. The reg-
isters are copied into the program using the ptrace API, while the memory
values are copied using direct memory access.
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Figure 2: A diagram of ASC’s design. Arrows represent flow of state. The main process
uses its state to train the machine learning model (1) and provide a basis for prediction to
the scheduler (2). It also queries the cache for predicted states identical to its current state
(3). If the cache contains such a predicted state, it returns the corresponding speculated
state to fast-forward the main process (4). The scheduler sends the main process’s most
recent state to the machine learning model (5) and receives predictions for future states of
the main process (6). It then scatters these into the workers for speculation (7). When the
workers are done speculating, they add the predicted and speculated states to the cache (8)
for the main process to look up later.

3.3 OPERATION OF ASC

With these key data structures and operations defined, we can explain how ASC
operates. We diagram ASC’s operation in Figure 2. As described earlier, ASC
begins operation by initializing the main process and workers. It launches all of
them normally as children, using fork and exec, then takes control of all of them
using the ptrace API. It then uses ptrace to set the target instruction pointer
as a breakpoint into the main process and into each worker, then sleeps and waits
for processes to reach their breakpoints.

When a worker process reaches its breakpoint, ASC first gathers the process’s
state into a state vector. Then, ASC uses that state vector to update the cache. To
do this, ASC checks what state the worker began computation from, then caches
the correspondence between that previous (predicted) state vector and the current
(speculated) state vector. Next, the scheduler uses the machine learning model to
predict a future state of the main process from its last observed state. Then, ASC
scatters that predicted state into the worker, using the ptrace API and direct
memory access to copy the contents of the state vector into the appropriate registers
and memory locations of the worker. Finally, ASC restarts the worker, beginning
speculative execution from the new predicted state.

When the main process reaches its breakpoint, ASC first gathers the main
process’s state vector. Then, if the machine learning model is still being trained,
ASC adds the correspondence between the recently gathered state vector and the
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last gathered state vector from the main process to the model’s training set. Next,
ASC checks the cache to see if any of the predicted state vectors in the cache
match the gathered state vector. If one does, ASC scatters the speculated state
corresponding to that predicted state into the main process. This fast-forwards the
main process into the speculated state. Then, ASC restarts the main process.

3.4 IMPLEMENTATION OF ASC

Now that we have described how ASC is meant to operate, we will describe the
actual implementations of the core data structures of the bare-metal version of
ASC and the implications of those implementations on our new version of ASC.

• The machine learning model implemented in the bare-metal version of ASC
is a shallow but fully-connected neural net. This net takes every bit in a
process’s current state as input and returns as output every bit of its predicted
state the next time it reaches the breakpoint.

• The cache contains only a single slot. Every time a worker process reaches
the breakpoint, it places its own predicted and speculated states into that slot.
The main process checks only against that single slot.

• The scheduler is capable of scheduling only a single worker process. It sim-
ply has that process speculate from the most recent prediction made. This is
the reason why the cache can operate with only a single slot.

As a result of these implementations, the bare-metal version of ASC is ex-
tremely limited in its functionality. Because it can only support a single worker
process (while the abstract ASC design allows for arbitrarily many), it cannot ex-
ploit more than a single additional core in speeding up a target program. Moreover,
because its machine learning model is a fully-connected neural net, it scales poorly
with the size of the state vector and cannot handle programs with large state vec-
tors. Therefore, to make our new data dependency system for ASC truly functional,
we need to not just implement it but also improve the core systems of ASC—the
machine learning model, the cache, and the scheduler—to fully exploit ASC’s po-
tential power.

3.5 OVERVIEW OF PIN

The data-dependency tracking in our new version of ASC makes extensive use of
Pin, a dynamic instrumentation tool developed by Intel (Luk et al., 2005). Pin uses
a just-in-time (JIT) compiler to insert and optimize machine code. The JIT runs
directly on the instruction set architecture (ISA) itself, compiling the original ISA
to an instrumented ISA without any intermediate or any need to see the source
code. The JIT maintains a code cache that stores the compiled ISA so that instru-
mentation only has to be done once. The target program’s original code is never
executed, only the instrumented code from the cache.
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To instrument a program, Pin makes use of a Pintool, a package of routines
that is compiled as a shared library and loaded by Pin. A Pintool contains two
types of routines: analysis routines and instrumentation routines. Analysis rou-
tines do the actual useful work of the Pintool while instrumentation routines deter-
mine when analysis routines should be run. For example, in a Pintool that counts
memory reads, the analysis routine might increment a counter, while the instru-
mentation routine would tell Pin to insert a call to the analysis routine after every
unique memory read.

When an application is launched under Pin, the Pin binary first starts the target
application in its own address space, then uses ptrace to take control of the
application’s execution, then loads the Pintool. The Pin binary then begins JITting
the target application. Whenever Pin reaches an instruction it has not seen before,
it calls the Pintool’s instrumentation routines to determine which analysis routines
should be run after that instruction. It then inserts calls to those analysis routines
around the instruction, adding both the instruction and the analysis routine calls
to the code cache. In the example of a Pintool that counts memory reads, if Pin
reached a move instruction (which contains a single memory read), it would add
after that instruction an increment instruction for the counter. The code cache
entry for the move instruction would then become the move instruction followed
by the increment instruction. After instrumentation is complete, the instruction
and analysis routines are executed from the code cache. If the instruction is ever
encountered again, Pin simply runs the instrumented code cache entry without any
need to rerun the instrumentation routine.

4 IMPLEMENTATION

In this section, we discuss our improvements to ASC. First, we explain how we
reworked ASC’s three core systems: the machine learning model, the cache, and
the scheduler. Next, we discuss the theory behind data dependency tracking and
the details of how it is used in ASC. Then, we describe the implementation of the
Pintool, which actually performs data dependency tracking. We also describe ad-
ditional systems we have to implement within ASC to ensure consistency between
the uninstrumented main process and instrumented worker processes. Finally, we
describe how all these updated systems work together during ASC’s operation.

4.1 MACHINE LEARNING MODEL

The bare-metal version of ASC uses a neural net as its machine learning model.
Specifically, it uses a fully-connected net with a single hidden layer. The major
advantage of using neural nets is that they can be trained online so that ASC can
learn as it executes without the need to pause for batch training. However, nets have
several disadvantages. They are opaque; one cannot reason about what causes nets
to generate the output that they generate. They are also inflexible; the sizes of their
input and output cannot readily be changed without complete retraining. Worse,
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because the particular net the bare-metal version used is fully connected, the time
complexity of prediction and training scale quadratically with the number of bits
predicted. This makes the net too slow to be useful for large numbers of bits.

To correct these problems, we choose to use simple decision trees as our learn-
ers. We choose decision trees because the training set consists entirely of binary
values (bits) with no noise. This avoids the two largest disadvantages of decision
trees: their difficulty in appropriately splitting many-valued input and their ten-
dency to overfit to noise. However, it does not affect their advantages, the most
important of which is that because we train a separate tree for each output bit,
the number of trees and thus time complexity of prediction and training increases
linearly with the number of bits predicted (as our decision trees have a set maxi-
mum depth and therefore effectively constant size). This allows trees to massively
outscale the quadratic neural nets. Beyond that, trees are fully transparent, allow-
ing us to easily reason about a tree’s behavior simply by examining it. This makes
it much easier to determine whether ASC will work on a particular program and to
find an optimal breakpoint instruction.

4.2 CACHE

The bare-metal version of ASC did not implement a true cache. This was because
it was built to only support a single worker. Instead, it simply remembered the
last speculated state the worker had returned along with the predicted state it had
speculated from. When the main process reached the breakpoint, ASC checked
the main process’s state against that predicted state and, if they matched, fast-
forwarded using the speculated state. This can also be thought of as a single-entry
cache. Needless to say, this design cannot scale to multiple workers and cores.
Moreover, it caused problems even with a single worker as potentially useful older
predictions could be overwritten by newer ones.

To scale our system to many cores, we designed a true cache that allows for
arbitrarily many entries. Our cache implements two functions, cache add and
cache lookup. cache add takes in a predicted state zp, a speculated state
zs, and masks mr and mw of all bits that were read from and written to during
the computation of the speculated state from the predicted state and adds the tuple
(zp, zs,mr,mw) to the cache. cache lookup takes in the main process state zm
and checks if any cache entry (zp, zs,mr,mw) contains a predicted state zp which
is identical to zm in all bits read during the computation of zs; that is, if:

zm ∧mr = zp ∧mr

If one does, it returns that entry’s speculated state, else, it returns null. The reason-
ing behind this use of the read-mask is discussed in Section 4.4.

We decided to implement the cache as a hash table. Originally, the key for a
tuple (zp, zs,mr,mw) would be a hash of zp∧mr, the bitwise AND of the predicted
state and the read mask. We would look up a main process state zm by hashing
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zm ∧mr, looking it up in the table, and if there was a match checking if zm ∧mr

is fully identical to the returned zp ∧mr. The problem with this, however, is that
mr is not part of zm, it is instead a part of the hash table entries. Each entry has
its own unique read mask. This means we could not do a single hash and lookup;
instead, we would have to separately compute and look up the hash of zm ∧mr for
every unique mr in any entry of the table. This would make the speed of hash table
lookup linear on the size of the table, which is less than ideal for a hash table.

To avoid this problem, we needed a fast hash function that did not depend on
the read-mask and did a good job of distinguishing states. We realized that the way
to develop such a hash function was to hash the values of the live registers. While
the set of memory values that were read from might change between iterations of a
program, the set of registers that are live at the breakpoint never changes. It is part
of every mr. Moreover, the values of the registers do a good job of discriminating
states: for all programs we tested on, if the states of the live registers were identical,
the states of the areas of memory under the read mask were probably also identical.
Given the centrality of registers to all computations, this is likely true in general
for nonadversarial programs. This allows us to implement the cache as a hash
table where the “hash” of each tuple (zp, zs,mr,mw) is a simple hash function
run over the values of the live registers of zp. When we lookup a main process
state zm we simply hash its live registers and look up the hash in the table. This is
equivalent to asking if there is an entry (zp, zs,mr,mw) where the register values
of zp and zm are identical. If there is such an entry (zp, zs,mr,mw) we check
if zm ∧ mr = zp ∧ mr. This is equivalent to asking if the memory values are
also identical under the read-mask. If the equality is true, we return zs (subject to
modification using the procedure described in Section 4.4).

The astute reader may have recognized that it is sometimes necessary to do
multiple sequential cache lookups. This occurs when the final modified state re-
trieved from the cache matches some other cache entry. Depending on the sched-
uler, this can happen an arbitrary number of times in succession. Originally, we
solved this problem by having cache lookup iterate. If it found a speculated
state, instead of returning it would look up that speculated state as a predicted
state and repeat until it had reached a speculated state that had no match in the
cache. However, this solution became extremely expensive when state vectors be-
came large as it required synchronous performance of a large number of whole-
state-vector Boolean operations in the main process. To optimize this problem of
iterated lookups, we have asynchronous threads optimize the cache. We search for
pairs of entries (zp, zs,mr,mw) and (z′p, z

′
s,m

′
r,m

′
w) such that zs∧m′

r = z′p∧m′
r;

that is, pairs of entries where the speculated state of the first matches the predicted
state of the second under the read-mask of the second. If we find such a pair, we
combine it into a single entry (zp, zt,mr∨m′

r,mw∨m′
w) where zt is the state con-

structed from zp and z′s using the procedure described in Section 4.4 and the read-
and write-masks are combined to reflect the set of all bits read from and written to
during the computation of z′s from zp. This means that cache lookup does not
have to iterate, whatever speculated state it finds the first time is the state it returns.
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4.3 SCHEDULER

In the same way the bare-metal version of ASC did not implement a true cache,
it did not implement a true scheduler. Again, this was because it was designed to
only support a single worker. Every single time this worker reached the breakpoint,
its predicted and speculated state would be added to the single-entry cache. Then
the worker would be restarted with a new predicted state generated by the machine
learning model from the most recent state of the main process. As we have stated,
this system does not scale to multiple cores and workers and needed to be replaced.

To get scalability, we implemented a new scheduler for ASC. The goal of the
scheduler is to assign different predictions to different workers so that every worker
is usefully speculating about the future of the main process. We developed the idea
of timesteps in ASC to implement a simple, effective, low-overhead scheduler. We
define a timestep as the period of the main process reaching the breakpoint. The
first time it reaches the breakpoint is the first timestep, the second is the second
timestep, and so on. We can use timesteps to simplify the scheduler by recogniz-
ing that the predictions created by our machine learning model are not only general
predictions for the future but also predictions for a specific timestep. The scheduler
maintains a large table with an entry for each timestep (modulo a large number).
An entry in the table is marked if a worker is currently speculating or has spec-
ulated about a prediction for that timestep. Every time a worker process is ready
for scheduling, the scheduler assigns it to the N th unmarked entry in the table,
where N is a small number chosen to ensure the speculation completes before the
main thread reaches the timestep. Assuming the main process was last observed in
timestep t and the chosen entry is for timestep t′, the scheduler then has the ma-
chine learning model iteratively predict from the main process state t′ − t times to
create a prediction for timestep t′. Next, the scheduler scatters that predicted state
into the worker process and restarts it. This ensures that no two workers are ever
working on the same prediction and that every speculation from a predicted state
at some timestep t finishes before the main process reaches timestep t.

4.4 DATA DEPENDENCY

The goal of the data-dependency tracking is to expand the set of programs on which
ASC can achieve speedup by reducing the number of bits it must predict correctly.
We first explain the model present in the bare-metal version of ASC, then explain
our model and why it is guaranteed to be correct. In the bare-metal version of ASC,
the cache consists of a single map zp → zs, where zp is a predicted state and zs
is the state speculatively executed from that predicted state. Because we assume
programs are deterministic, this means that if the program is ever in state zp, it
must in the future enter state zs. Therefore, if we observe that the main process is
ever in state zp, we can immediately fast-forward it to state zs, allowing it to skip
all the computation in between.

The data-dependency model extends this by introducing read and write masks.
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Figure 3: A diagram of how cache queries use the read-mask. ASC is looking up main
process state zm in the cache. zm is identical to cached predicted state zp in their first
byte (orange outline), but not in their second or third. However, the read-mask mr tells us
only the first byte of zp was read during computation. Therefore, zm and zp match and the
query is successful.

The cache consists of maps zp → zs along with, for each map, a read-mask mr

and a write-mask mw. mr and mw are the sets of bits read from and written to,
respectively, during the computation of zs from zp. Assume the main thread is in
state zm. We want to find state zt, the state it will be in the next time it hits the
breakpoint. If zm were precisely equal to zp, that would be easy, zt would be zs.
That is the model described previously. However, the read-mask and write-mask
allow us to do more than that. Assume that zp and zm are equivalent under the read
mask; that is, ASC was able to successfully predict all bits that were read during
the computation proceeding from zp. In algebraic terms:

zm ∧mr = zp ∧mr

This is diagrammed in Figure 3. If the equation is true then the computations
proceeding from zp and from zm are identical; bits that are not read from cannot
affect the results of computations. This does not mean that zt equals zs, however,
as there may be other bits not touched during the computation that differ between
the two vectors. However, we can still derive zt from zs and zm by using the write-
mask. We recognize that the set of all bits that are changed between zm and zt is
identical to the set of all bits changed between zp and zs, and that those bits are
precisely the bits that are under the write-mask and take the values that they have
in zs. Therefore, to derive zt, we simply set all the values in zm that are under the
write-mask to the appropriate values from zs, while leaving the rest of the bits the
same. To put this in algebraic form:

zt = (zs ∧mw) ∨ ((zm ∨mw) Ymw)

This is diagrammed in Figure 4. The equation is guaranteed to work, meaning that
if we can dynamically generate read-masks and write-masks during the operation
of worker processes, we need only correctly predict the bits that are under the read-
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Figure 4: A diagram of how cache queries use the write-mask. ASC is looking up main
process state zm in the cache and has found a hit which has speculated state zs and write-
mask mw. It now needs to construct true future state zt. The write-mask tells us the only
byte written to during the computation of zs was the second one, so zt is constructed with
the first and third bytes of zm (purple outlines) and the second byte of zs (orange outline).

mask during a particular computation. For many important types of programs, this
is a trivial fraction of the overall number of bits the program manipulates.

4.5 PINTOOL

Our system launches all workers using Pin and a custom Pintool. The Pintool
contains only a single data structure, a large segment of memory that is shared
with ASC, Pin’s parent. This segment is large enough to contain copies of the
registers, active areas of the program’s memory, and a read-mask and write-mask
each the same size as those active areas. We determine the active areas of memory
and their size by parsing the main process’s memory map in /proc/pid/maps.
The Pintool also acts as a library that contains several instrumentation functions.

The Pintool contains instrumentation for instructions with certain properties.
Pin automatically inserts into the worker process calls to the Pintool’s instrumen-
tation functions after any appearance of these instructions. Specifically, we instru-
ment:

• Memory reads. Pin automatically instruments all instructions that read from
memory, inserting multiple calls if the instruction reads from multiple loca-
tions. The instrumentation function for memory reads takes as an argument
the address that was read from along with the size of the read (in bytes). It
then updates the read-mask to mark those bytes as read from.

• Memory writes. Pin automatically instruments all instructions that write to
memory, inserting multiple calls if the instruction writes to multiple loca-
tions. The instrumentation function for memory writes takes as an argument
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the address that was written to along with the size of the write (in bytes). It
then updates the write-mask to mark those bytes as written to.

• The breakpoint. We supply ASC’s target instruction pointer to the Pintool
and instrument the instruction it points to. The instrumentation function
for the breakpoint takes as an argument a context data structure contain-
ing the values of all the worker process’s registers (including flags registers)
at the time the breakpoint is reached. The instrumentation function, when
called, copies those register values as well as the contents of the program’s
active memory areas into the shared memory segment, then signals ASC
and sleeps. While the instrumentation function sleeps, ASC gathers from
the shared memory segment and then scatters into it, replacing the contents
of the shared memory segment with new memory and register values from
which it wishes to speculatively execute. ASC then signals the Pintool. The
instrumentation function then wakes up and copies the new memory val-
ues back into their proper locations, clears the read- and write- masks, and
restarts execution of the worker process using the new register values.

4.6 MEMORY AND STACK ALIGNMENT

One assumption ASC makes is that the main process and workers are functionally
identical. This allows ASC’s notion of state to make sense. ASC relies on being
able to copy the register and memory values of the main process into a worker
process and have the worker process do exactly the same thing the main process
would have done. This is actually quite restrictive; for example, ASC cannot be
run with ASLR (address space layout randomization) because then the main and
worker process stacks would be in different locations. If that occured, any attempt
to copy the main process stack into the worker stack would either cause a write to
invalid memory (if one tried to write the main process stack to the same addresses
it had in the main process) or break every pointer into the stack (if one tried to write
the main process stack over the worker process stack). This creates a potential risk
for any attempt at instrumentation, as the instrumentation procedure must preserve
the memory map of the worker in order for ASC to work.

Fortunately, the nature of Pin allows us to avoid this problem. Pin (and the
Pintool) run in the same address space as the target program. When the target pro-
gram is run under Pin, Pin is the first executable launched, but it quickly relocates
itself (and the Pintool) elsewhere into the address space while allowing the target
program’s JITted instructions to run on the same stack and data segments as they
would normally. This means that any memory location that is valid in the main
process is also valid in the worker (and belongs to the target executable, not to Pin
or the Pintool). However, it also means that the arguments to Pin sit on the bottom
of the worker’s stack, so addresses in the stack are shifted down in the worker rela-
tive to the main process. This means the stacks of the main process and worker are
unaligned and thus ASC cannot work.
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Figure 5: A diagram of the stack realignment described in section 4.6, with the convention
that larger addresses are up and the stack grows down. The main process’s stack is laid
out like the middle column before the realignment and like the right column after the
realignment. In each column, the stack pointer points to the top of the last box.

We solve this problem by aligning the stacks of the main and worker pro-
cesses. We cannot do this by shifting the worker process’s stack up, as then the
pointers in the worker process’s argv would not point to the correct strings (as
they would have been overwritten in the upshift). Instead, we have to shift the stack
of the main process down. To do this, we exploit an assumption made by ASC. This
assumption is that programs run by ASC are compiled with a customized crt0.o
that, among other things, stores the values of the argc and argv pointers, com-
puted relative to the stack pointer rsp, in other registers before doing anything
else. To exploit this fact, we start both the main and worker process in a suspended
state, where no instructions have been executed and the only registers set are the
instruction and stack pointers. We then allow the main process to run until it has set
both the argc and argv pointers. Next, we set the main process’s stack pointer
to that of the worker. We do not actually modify the stack. This has the effect of
creating a “hole” in the stack of the main process between argc and argv (whose
locations the program still knows because those pointers were not modified) and
the actual program stack. A diagram of this is shown in Figure 5. This ensures
ASC’s assumption of identical memory layouts holds, with the sole and unlikely
exception of a program that directly manipulates the argv pointers in the loop
containing the breakpoint. If this occurs, the worker will crash and be terminated
and ASC will execute the main process as normal, but without producing speedup.

4.7 ASC OPERATION SUMMARY

In the new system, ASC continues to operate much as described in the introduc-
tion and in Section 3. The three key data structures of ASC remain the machine
learning model, the cache, and the scheduler. Each uses the new designs described
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in sections 4.1, 4.2, and 4.3, respectively.
When ASC is run, it begins by launching the main process using fork, exec,

and ptrace as normal. ASC then launches a number of workers using Pin and
the Pintool described in Section 4.5. After that, ASC adjusts the stack of the main
process using the alignment procedure described in Section 4.6. Then, ASC uses
ptrace to set a breakpoint on the target instruction pointer in the main process,
configures a signal handler to intercept signals from the workers, and goes to sleep
waiting for processes to reach their breakpoints.

When a worker process hits the breakpoint, it sends a signal to wake ASC up,
then goes to sleep. When woken, ASC first gathers the worker process’s state, read-
mask, and write-mask from the shared memory described in Section 4.5. Then,
it uses those vectors to update the cache. Next, the scheduler uses the machine
learning model to predict a future state of the main process from its last observed
state following the timestep procedure described in Section 4.3. Then, it scatters
that predicted state into shared memory for the worker and signals the worker to
wake up, beginning speculative execution from the predicted state.

When the main process hits the breakpoint, ASC first gathers the main pro-
cess’s state. Then, if the machine learning model is still being trained, ASC adds
the correspondence between the recently gathered state and the last gathered state
to the model’s training set. Next, ASC queries the cache to see if the gathered state
matches any of the predicted states in the cache under their read-masks. If one
does, ASC constructs the true future state using the procedure described in Section
4.4, then scatters it into the main process. Then, ASC restarts the main process.

5 EXPERIMENTS

We evaluate the performance of the new version of ASC. First, we describe the
kernels we use for evaluation and the conditions in which we run them. Next,
we prove that data-dependency tracking can massively reduce state space sizes for
kernels that need it. Then, we explain the metrics we will use to evaluate ASC’s
performance. After that, we analyze the instrumentation overhead that comes from
using Pin. Then, we evaluate the actual speedup that the new version of ASC can
achieve. After that, we analyze the reasons why this speedup is not optimal. We
demonstrate that for most kernels, the only barrier between our results and perfect
100%-per-core speedup (other than unavoidable factors such as Amdahl’s Law) is
Pin instrumentation overhead. Finally, we show that speedup increases linearly
with the number of available cores.

5.1 KERNELS

Our experiments use a variety of kernels, small test programs that we try to speed
up with ASC. We have six kernels total. The first three are adapations of the three
originally used in Waterland et al. (2014):

• collatz: A kernel that iterates through a range of positive integers, testing
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if each satisfies the Collatz conjecture. The Collatz conjecture states that if
one starts with some positive integer n and sequentially divides it by two if
it is even and multiplies by three and adds one if it is odd, the sequence will
eventually converge to one. ASC parallelizes it by having different workers
test the Collatz conjecture on different numbers. It is interesting because
ASC automatically memoizes the results of the collatz conjecture, reusing
the same speculation multiple times and thus outperforming conventional
parallelization techniques (Waterland et al., 2014).

• ising: A pointer-based condensed matter physics program. It iterates
through a linked list of spin configurations, identifying the element in the
list with the lowest energy state. It is interesting because existing paralleliz-
ing compilers will not parallelize it (Waterland et al., 2014). It is parallelized
by predicting values referencing later nodes of the linked list.

• mm: Naive integer matrix multiplication. It is adapted from the 2mm mul-
tiple matrix multiply kernel in Polybench/C reported by Waterland et al.
(2014). It is parallelized by having different workers compute different
sections of the final matrix. Unlike the previous kernels, it is extremely
memory-intensive, with memory use scaling quadratically with input. It
therefore tests the overhead of ASC on high-memory computations (Our ex-
periments used 4000x4000 matrices, meaning each worker process used over
a gigabyte of memory).

The next kernel is adapted from Polybench/C:

• cov: Covariance matrix calculation. It is adapted from the covariance
kernel in Polybench/C. It is parallelized by having workers compute different
sections of the final matrix. Like mm, it is extremely memory-intensive. Like
3sum, it has nonuniform distance between breakpoints (the breakpoint is
reached more frequently over time) because the final covariance matrix is
symmetric, so only its upper triangle needs be calculated.

The remaining two kernels we developed ourselves. The first does not require
data dependency tracking; the second does:

• 3sum: A naive cubic solver for the 3-subset sum problem. It generates a
large random list of integers and iterates through it looking for a set of three
integers that sum to zero. It is parallelized by having different workers test
different sets of integers. It has nonuniform distance between breakpoints
(the breakpoint is reached more frequently over time) because the size of the
search space decreases over time.

• readmap: A simple but extremely computationally intensive map operation
that repeatedly adds random values to entries in an array. It is parallelized
by having different workers perform the map on different elements of the
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Kernel Bits Before Bits After

3sum 80 80
readmap 2520 120
collatz 224 224
ising 280 280
mm 1024000072 72
cov 576000352 352

Table 1: Sizes of kernel state spaces before and after state space reduction though
data dependency tracking.

array. This program is a demonstration of an embarassingly parallel prob-
lem that ASC should be able to speed up, but cannot speed up without data
dependency tracking.

5.2 METHODOLOGY

We ran all experiments on a Microway 1U Xeon server with two Intel Xeon E5-v4
processors. Each of the two processors has 22 cores, for a total of 44. We dis-
abled Intel Turbo Boost on all cores to guarantee consistent clock speeds between
cores. The server has 256 GB of main memory. We designed all kernels to random-
ize behavior between runs (for example, mm randomly generates its matrix every
run). This randomization is to demonstrate that ASC is actually making predictions
about states and not simply memorizing end states. The exception is collatz,
whose nature is not amenable to randomization. We experimented on collatz
by training it on one set of numbers and testing it on a different set of numbers.
We found all breakpoint instruction pointers manually. In addition to this, ising
and mm required register liveness analysis to determine which registers were dead
and did not need their values predicted; we also did this manually. We trained all
decision trees offline. Prior to experiments being run, we ran each kernel twenty
times on different inputs to generate a training set from which we trained decision
trees. We then used these trees for all experiments.

5.3 STATE SPACE SIZE REDUCTION

We demonstrate the effectiveness of data dependency tracking at reducing the size
of the state space of our kernels. We define the size of the state space of a kernel
as the total number of bits whose values ASC must predict. We report our results
in Table 1. Three of the kernels (collatz, ising, and 3sum) do not need data
dependency tracking because they do not modify large areas of memory. 3sum and
ising look for list entries with certain properties, so they perform huge numbers
of reads but few writes. collatz, meanwhile, performs only arithmetic. All
three kernels could be sped up by the bare-metal version without data dependency
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tracking, although the amount of speedup was limited by the bare-metal version’s
lack of a true cache or scheduler.

The other three kernels, readmap, mm, and cov, experience large reductions
in the sizes of their state spaces. In the case of readmap, this is due to the data
dependency tracking realizing that the bits in the array to which the map writes do
not need to be predicted. This is identical to the squaring map example in Section
1.3. The only bits that have to be predicted are loop counters. Much the same
is true for mm and cov, where the size reduction is even more extreme. We had
mm multiply two 4000 x 4000 matrices of longs, meaning the output was over a
gigabyte in size. However, because matrix multiplication does not depend on its
own output, predicting elements of the output matrix is unnecessary. The bare-
metal version does not realize this, with disastrous results when it tries to predict
the values of a billion bits. However, the new version of ASC recognizes that only
the bits in the loop counters have to be predicted correctly, leaving only 72 bits to
predict, regardless of the size of the matrix. In cov, the same is true, but with a
slightly smaller matrix (3000 x 3000).

5.4 METHODS OF ANALYSIS

Our analysis of ASC’s performance uses two key metrics. The most important of
these is speedup. Speedup is defined as the time it takes for a kernel to run natively
divided by the time it takes to run under ASC. This is the core measure of how
well ASC performs on a given program. A closely related metric is the computa-
tional cache hit rate. Computational cache hit rates are defined as the percentage
of lookups (including both synchronous and asychronous iterated lookups as per
Section 4.2) into ASC’s computational cache that hit. Computational cache hit
rates can also be thought of as the percentage of computation done on the workers
instead of on the main process. A computational cache hit rate of 80% means that
the workers did 80% of the overall computation. Computational cache hit rates can
be used to estimate speedup. For example, a computational cache hit rate of 80%
implies 5x speedup because only 20% of the overall computation is done by the
main process while the remaining 80% is done “for free” in parallel by workers
on auxiliary cores. High levels of overhead can cause speedup to be less than that
estimate, however.

Crucial to interpreting speedup and computational cache hit rate is the notion
of CPU efficiency. CPU efficiency is a measure of the overhead of the Pintool.
We perform data-dependency tracking by instrumenting workers using Pin, which
inserts analysis code after all reads and writes to record the locations read from and
written to. While this is effective, it is also slow; we have to insert multiple anal-
ysis instructions after every instruction that reads from or writes to memory. As a
result, all of the workers (but not the main process, which does not need instrumen-
tation) run much more slowly than they would uninstrumented. We call the ratio
of a kernel’s uninstrumented runtime to its instrumented runtime the kernel’s CPU
efficiency. A kernel’s CPU efficiency is inversely proportional to the percentage of
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Figure 6: An example of how ASC works with a single worker with 100% efficiency. The
numbers in the boxes are timesteps. The main process computes the first timestep while the
worker computes the second. This lets the main process fast-forward to the third timestep
and the worker compute the fourth. Then the main process can fast-forward to the fifth
time-step while the worker computes the sixth, and so on. As a result, the main process
finishes the computation twice as quickly as it would natively, achieving 2x speedup with
a 50% computational cache hit rate.

Figure 7: An example of how ASC works with a pair of workers each with 50% efficiency.
The numbers in the boxes are timesteps. The main process computes the first and second
timesteps while the workers compute the third and fourth. This lets the main process fast-
forward to the fifth timestep and compute both it and the sixth timestep while the workers
compute the seventh and eighth. Then the main process can fast-forward to the ninth time-
step while the workers computes the eleventh and twelfth, and so on. As a result, the
main process finishes the computation twice as quickly as it would natively, achieving 2x
speedup with a 50% computational cache hit rate.

its executed instructions that are reads or writes because only reads and writes are
instrumented.

CPU efficiencies are important because they determine the maximum amount
of speedup ASC can achieve with a given number of cores. Assuming ASC is sup-
plied with n workers each with a CPU efficiency of ec, ASC can attain a maximum
speedup of nec + 1. We demonstrate this by example in Figures 6 and 7. Figure 6
shows ASC operating on a program with a single worker with 100% efficiency. Ev-
ery time the main process reaches the breakpoint, ASC fast-forwards one timestep
using the result of the worker’s last speculation. This involves two cache lookups,
the first of which succeeds at finding the result of the speculation and the second of
which tries to iterate from the speculation in the cache as explained in Section 4.2
but fails. As a result, the main process finishes the computation twice as quickly as
it would natively, achieving 2x speedup with a 50% computational cache hit rate.
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Kernel CPU Efficiency

3sum 15.3%
readmap 16.1 %
collatz 31.7 %
ising 65.4 %
mm 10.7%
cov 16.9%

Table 2: CPU efficiencies of all kernels. CPU efficiencies are defiend as the ratio
of the runtime of the kernel when uninstrumented to when instrumented.

Figure 7, for comparison, shows ASC operating on a program with two work-
ers each with 50% efficiency. Because each worker is half as fast as the main
process, ASC can only fast-forward the main process every other time it reaches
the breakpoint. However, because there are two workers, each time it does fast-
forward, it fast-forwards by two timesteps. As a result, the main process still fin-
ishes the computation twice as quickly as it would natively, achieving 2x speedup
with a 50% computational cache hit rate. However, it took two workers with 50%
efficiency to achieve this speedup, while a single worker with 100% efficiency
could achieve this speedup on its own.

In the remainder of the experiments section, we analyze the performance of
ASC both absolutely and relative to CPU efficiencies. First, in Section 5.5, we
report the CPU efficiencies for each kernel. Next, in Section 5.6, we report compu-
tational cache hit rates attained by ASC on all kernels. Finally, in Section 5.7, we
report speedups on all kernels and compare them to the kernels’ CPU efficiencies.
We show that while the relatively low CPU efficiencies limit the raw speedup we
can achieve, our speedups for most kernels are close to the theoretical maximums
given our CPU efficiencies. This means that ASC’s speedups are only limited by
the instrumentation overhead from Pin, and if that can be eliminated (likely through
hardware support), ASC can reach its goal of near-linear automatic speedup.

5.5 CPU EFFICIENCY

We report CPU efficiencies for all kernels in Table 2. As we explained in Section
5.4, CPU efficiencies are the ratios of kernels’ uninstrumented runtimes to their
instrumented runtimes. In other words, they are the ratio of the (instrumented)
workers’ runtimes to the (uninstrumented) main process’s runtime. They provide
an upper bound on the amount of speedup ASC can achieve. Assuming ASC is
supplied with n workers each with a CPU efficiency of ec, ASC can attain a max-
imum speedup of nec + 1 (for example, as we showed in Figure 7, two workers
each with 50% efficiency can attain a maximum speedup of 2x).

While the CPU effiencies are relatively low, this is only a reflection of ASC’s
newness and immaturity as a technology. Pin is an effective tool for demonstrating
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Figure 8: A diagram of computational cache hit rates for all kernels given various numbers
of workers. Computational cache hit rates are defined as the percentage of lookups into
ASC’s computational cache that hit.

that data-dependency tracking can work on real hardware and achieve real speedup,
but it is not an optimal way of performing data-dependency tracking. More sophis-
ticated future generations of ASC will be able to integrate themselves more tightly
into the virtual memory system to automatically record data dependency operations
without incurring as much overhead. This could take the form of software-level in-
strumentation working within the operating system’s virtual memory layer or of
hardware instrumentation that automatically flags addresses as read from or writ-
ten to and allows easy querying and resetting of those flags.

5.6 COMPUTATIONAL CACHE HIT RATES

We now report computational cache hit rates on all kernels in Figure 8. We report
hit rates for 5, 10, 20, 30, and the full complement of 42 workers (reserving one of
our server’s 44 cores for the main process and another for ASC itself).

For four of the kernels—readmap, collatz, ising, and mm—the com-
putational cache hit rates represent exactly what they ought to, the percentage of
computation done by the workers instead of by the main process as explained in
Section 5.4. For three of these, the computational cache hit rate serves as a good
estimator of the speedup we report in Section 5.7 (the exception, mm, achieves less
speedup than one would expect due to complications from its massive memory us-
age, as we explain in Section 5.7). Out of these kernels, ising and collatz
have the highest computational cache hit rate because of their high CPU efficiency
and collatz’s auto-memoization, which allows it to reuse the results of earlier
speculations. readmap performs slightly worse. mm has a lower computational
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Figure 9: A diagram of speedups attained by all kernels given various numbers of workers.
Speedup is defined as the time it takes for a kernel to run natively divided by the time it
takes to run under ASC.

cache hit rate than any of the preceding three because of its low CPU efficiency.
For the remaining two kernels, 3sum and cov, the computational cache hit

rates are somewhat misleading because in both kernels the distances between break-
points are non-uniform. Both programs reach the breakpoint more frequently as
they run. In 3sum this occurs because the size of the kernel’s search space shrinks.
In cov this occurs because the height of the column of the triangular matrix the
kernel calculates shrinks. Because the amount of computation done between break-
points is non-uniform, the linear relation between computational cache hit rate and
speedup breaks down. In cov, the computational cache hit rate is an overestimate
of the amount of speedup achieved because later workers add a large number of
cache entries that correspond to little computation but still register as cache hits. In
3sum, which reaches its breakpoint more frequently than cov, the exact opposite
happens, causing the computational cache hit rate to underestimate the amount of
speedup. Towards the end of computation, it queries the cache more quickly than
the workers can fill it. This causes a large number of misses, but does not reduce
speedup because al those cache misses are for trivial amounts of computation.

5.7 SPEEDUP AND ANALYSIS

We now report our main results, the speedups attained by ASC on all kernels. We
report raw speedups in Figure 9. This figure shows the speedups attained by all
kernels given 5, 10, 20, 30, and the full complement of 42 workers (reserving one
of our server’s 44 cores for the main process and another for ASC itself). While
the differences between the kernels’ speedups may appear large, they correspond
closely to the differences in CPU efficiencies reported in Section 5.5.
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To clarify this correspondence, we compare in Figure 10 the speedups attained
by ASC to the maximum possible speedups given the kernels’ CPU efficiencies. As
explained in Section 5.5, the maximum possible speedups are extrapolations from
the CPU efficiencies assuming that n workers each with efficiency ec can attain a
maximum speedup of nec+1 (for example, as we showed in Figure 7, two workers
each with 50% efficiency can attain a maximum speedup of 2x). We report these
speedups for every kernel in Figure 10. In Figure 10, the blue lines are the speedups
we actually achieve, while the green lines are the theoretically maximal speedups.

readmap mm

cov 3sum

ising collatz

Figure 10: Diagrams of the actual speedups achieved on all kernels (blue) relative to the
maximum speedups possible given the the kernels’ CPU efficiencies (green).

As we can see from Figure 10, two kernels perform somewhat worse than
the other four relative to their theoretical maximum speedups. These two kernels
are cov and mm. Both perform worse than expected due to their gigantic sizes in
memory. mm uses well over a gigabyte and cov several hundred megabytes per
worker. The overhead incurred from gathering, scattering, and performing com-
putational cache operations on these gigantic memory spaces causes cov and mm
to attain less speedup than they would otherwise. This is worsened by slowdown
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from CPU cache contention between all of the workers, making them compute
somewhat slower than they would otherwise. In cov these problems are exacer-
bated by the nonuniform distance between breakpoints explained in Section 5.6,
which makes optimal scheduling of workers difficult and wastes large amounts of
worker time.

On the other hand, the remaining four kernels perform extremely well. These
four are readmap, 3sum, ising, and collatz. All four have speedups within
a small factor of the theoretical maximum given their CPU efficiencies. Two of
these kernels have especially interesting results. Collatz actually attains more
speedup than the “theoretical maximum” for small numbers of cores because its
auto-memoization allows it to reuse speculations. Ising, meanwhile, attains near-
optimal speedup despite its extremely high CPU efficiency, proving that ASC does
not rely on its kernels having poor CPU efficiencies to scale and will still scale
extremely well once CPU efficiencies are improved. All four kernels’ speedups
are exactly what we expected given their computational cache hit rates, once we
account for 3sum’s artifically poor hit rate as explained in Section 5.6. This proves
that ASC fundamentally works–accounting for the CPU efficiencies of the work-
ers, it is able to achieve speedups comparable to other parallelization systems on
kernels with reasonable memory overhead. More importantly, speedups on all four
kernels (and mm) scale near-linearly with an increasing number of cores. This
demonstrates that ASC can achieve its goal of providing near-linear automatic par-
allelization for large classes of programs.

6 CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY

In this thesis, we present a new version of ASC, a powerful system for automatic
parallelization. We prove that ASC is capable of working on unmodified binaries
without the use of static analysis, giving it more potential power than other au-
tomatic parallelization systems. We demonstrate ASC’s ability to automatically
parallelize a variety of kernels. These kernels include fundamental paralellizable
computations such as maps or matrix multiplication along with problems other
automatic parallelization systems struggle with such as linked list navigation and
auto-memoization. Moreover, we show that ASC’s speedups scale linearly with the
number of cores, allowing it to work efficiently on systems with large numbers of
cores. This makes ASC potentially useful for many scientific computing applica-
tions, where researchers often not trained in parallelization techniques need to run
extremely computationally intensive programs on extremely powerful computers.

6.2 FUTURE WORK

Moving forward, a great deal of work can be done to improve ASC and make it an
even more powerful tool. Future avenues of research include:
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• Implementing an automatic breakpoint recognizer and live register analyzer.
For all our experiments, as was discussed in Section 5.2, both breakpoint
recognition and live register analysis were done manually. Performing them
automatically, however, is possible. Live register analysis is well-understood,
though no tools yet exist for easily performing it on a compiled binary as we
need to. LASC had a breakpoint recognizer that used Gaussian processes,
and while it has not been implemented in the new version of ASC yet, a ver-
sion of it will be included in the future. Once both breakpoint recognition
and live register analysis are done automatically, ASC will be fully automatic
and will be able to speed up a parallelizable binary with no user input.

• CPU efficiency improvements. As was discussed in Section 5.5, Pin is an
effective but suboptimal way of performing data dependency analysis. Fu-
ture versions of ASC will do this in a more efficient way, either through
better integration with the virtual memory system or, looking forward, with
specialized hardware.

• Further state space reduction. Data-dependency tracking dramatically re-
duces the size of the state space for some kernels, as Section 5.3 makes
clear, but it does not actually minimize it. As a result, there are many paral-
lelizable programs ASC cannot speed up. For example, ASC cannot speed
up an accumulator that sums the elements in an array because that requires
predicting the values of the sum. This could be avoided by giving ASC more
information about what operations the computation was actually performing
on individual registers or areas of memory. In the case of the accumulator,
if we could tell ASC the value of the sum was never queried but only added
to itself (an associative and commutative operation), ASC would realize that
it did not actually need to predict the values of the sum, only calculate inter-
mediate values and add those to each other.

• Optimization. As was discussed in Section 5.7, ASC’s performance relative
to theoretical maximums is good, but it can always be better. With more
optimized code for major operations such as scattering, gathering, and pre-
dicting, we can reduce the constant factor of our linear time-dependence on
the memory consumption of worker processes. This will dramatically im-
prove performance on high-memory kernels such as mm.

The completion of any of these will make ASC far more powerful, the de-
velopment of all of them—which is completely possible—will make ASC a fully
mature technology capable of outperforming and outscaling any other automatic
parallelizer.
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